Open AkihikoWatanabe opened 7 months ago
複数のLLMを融合するモデルマージの話。日本語LLMと英語の数学LLNをマージさせることで日本語の数学性能を大幅に向上させたり、LLMとVLMを融合したりすることで、日本にしか存在しない概念の画像も、きちんと回答できるようになる。
著者スライドによると、従来のモデルマージにはbase modelが同一でないとうまくいかなかったり(重みの線型結合によるモデルマージ)、パラメータが増減したり(複数LLMのLayerを重みは弄らず再配置する)。また日本語LLMに対してモデルマージを実施しようとすると、マージ元のLLMが少なかったり、広範囲のモデルを扱うとマージがうまくいかない、といった課題があった。本研究ではこれら課題を解決できる。
著者による資料(NLPコロキウム): https://speakerdeck.com/iwiwi/17-nlpkorokiumu
URL
Affiliations
Abstract
Translation (by gpt-3.5-turbo)
Summary (by gpt-3.5-turbo)