Open parkjooyoung99 opened 1 year ago
Hi @parkjooyoung99
Cell2location expects integer counts. It is possible to incorporate background signal predictions ("Bleeding" signal - not corrected data) into the model as follows:
mu_sg = (m_g * (sum_f w_sf * g_fg) + s_eg + {new correction term}_sg) * y_s
This additional data {new correction term}_sg
would have to be added to adata.layers
, setup_anndata
and _get_fn_args_from_batch
and forward
modified to handle this additional input.
Apologies for the delayed reply. Please let me know if you would like to contribute the above.
First of all, thank you for making this brilliant tool :)
Bleeding correction of spatial data to capture more precise gene expression signal is used in our lab's spatial data. With this corrected data, I want to do the deconvolution and see if bleeding correction can enhance deconvolution result.
However, while running code, `
train visium model
i encounter the error below which i think data not following gammapoisson is causing the problem. Would there be a way to adjust the code to corrected data??
ValueError: Error while computing log_prob at site 'data_target': Expected value argument (Tensor of shape (1706, 7637)) to be within the support (IntegerGreaterThan(lower_bound=0)) of the distribution GammaPoisson(), but found invalid values: tensor([[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 2.5605, 0.0000], [ 2.8433, 2.5977, 4.5767, ..., 0.0000, 12.8026, 0.0000], [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], ..., [38.0151, 0.0000, 4.5767, ..., 0.0000, 2.5605, 0.0000], [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 2.5605, 0.0000], [ 1.0854, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]], device='cuda:0') Trace Shapes:Param Sites:
Sample Sites:
m_g_mean dist | 1 1 value | 1 1 log_prob |
m_g_alpha_e_inv dist | 1 1 value | 1 1 log_prob |
m_g dist | 1 7637 value | 1 7637 log_prob |
n_s_cells_per_location dist 1706 1 |
value 1706 1 |
log_prob 1706 1 |
b_s_groups_per_location dist 1706 1 |
value 1706 1 |
log_prob 1706 1 |
z_sr_groups_factors dist 1706 50 |
value 1706 50 |
log_prob 1706 50 |
k_r_factors_per_groups dist | 50 1 value | 50 1 log_prob |
x_fr_group2fact dist | 50 43 value | 50 43 log_prob |
w_sf dist 1706 43 |
value 1706 43 |
log_prob 1706 43 |
detection_mean_y_e dist | 1 1 value | 1 1 log_prob |
detection_hyp_prior_alpha dist | 1 1 value | 1 1 log_prob |
detection_y_s dist 1706 1 |
value 1706 1 |
log_prob 1706 1 |
s_g_gene_add_alpha_hyp dist 1 1 |
value 1 1 |
log_prob 1 1 |
s_g_gene_add_mean dist | 1 1 value | 1 1 log_prob |
s_g_gene_add_alpha_e_inv dist | 1 1 value | 1 1 log_prob |
s_g_gene_add dist | 1 7637 value | 1 7637 log_prob |
alpha_g_phi_hyp dist 1 1 |
value 1 1 |
log_prob 1 1 |
alpha_g_inverse dist | 1 7637 value | 1 7637 log_prob |
data_target dist 1706 7637 |
value 1706 7637 | `
Thank you!!