Open jrp2014 opened 1 day ago
Try updating your transformers to the latest as well
yes, I think that I have all the latest via a pip install -U -r requirements.txt
(transformers 4.46.3)
The full list is
Package Version
------------------ ----------------------------
accelerate 1.1.1
aiofiles 23.2.1
aiohappyeyeballs 2.4.3
aiohttp 3.11.2
aiosignal 1.3.1
annotated-types 0.7.0
anyio 4.6.2.post1
attrs 24.2.0
certifi 2024.8.30
charset-normalizer 3.4.0
click 8.1.7
cmake 3.31.1
datasets 3.1.0
dill 0.3.8
fastapi 0.115.5
ffmpy 0.4.0
filelock 3.16.1
frozenlist 1.5.0
fsspec 2024.9.0
gradio 5.7.1
gradio_client 1.5.0
h11 0.14.0
hf_transfer 0.1.8
httpcore 1.0.7
httpx 0.27.2
huggingface-hub 0.26.2
idna 3.10
inquirerpy 0.3.4
Jinja2 3.1.4
llvmlite 0.43.0
markdown-it-py 3.0.0
MarkupSafe 2.1.5
mdurl 0.1.2
mlx 0.21.0.dev20241128+974bb54ab
mlx-lm 0.20.1
mlx-vlm 0.1.3
mlx-whisper 0.4.1
more-itertools 10.5.0
mpmath 1.3.0
multidict 6.1.0
multiprocess 0.70.16
nanobind 2.2.0
networkx 3.4.2
numba 0.60.0
numpy 1.26.4
orjson 3.10.11
packaging 24.2
pandas 2.2.3
pfzy 0.3.4
pillow 11.0.0
pip 24.3.1
prompt_toolkit 3.0.48
propcache 0.2.0
protobuf 5.28.3
psutil 6.1.0
pyarrow 18.0.0
pydantic 2.9.2
pydantic_core 2.23.4
pydub 0.25.1
Pygments 2.18.0
python-dateutil 2.9.0.post0
python-multipart 0.0.12
pytz 2024.2
PyYAML 6.0.2
regex 2024.11.6
requests 2.32.3
rich 13.9.4
ruff 0.7.4
safehttpx 0.1.1
safetensors 0.4.5
scipy 1.13.1
semantic-version 2.10.0
sentencepiece 0.2.0
setuptools 75.6.0
shellingham 1.5.4
six 1.16.0
sniffio 1.3.1
starlette 0.41.2
sympy 1.13.1
tiktoken 0.8.0
tokenizers 0.20.3
tomlkit 0.12.0
torch 2.5.1
torchaudio 2.5.1
torchvision 0.20.1
tqdm 4.67.1
tqdn 0.2.1
transformers 4.46.3
typer 0.13.0
typing_extensions 4.12.2
tzdata 2024.2
urllib3 2.2.3
uvicorn 0.32.0
wcwidth 0.2.13
websockets 12.0
wheel 0.44.0
xxhash 3.5.0
yarl 1.17.1
I see,
Dolphin like NanoLLaVA use image_processor :)
Here is an example: https://github.com/Blaizzy/mlx-vlm/blob/595c1f0676066fe348b14b2fc8edfdb7607f812d/mlx_vlm/generate.py#L71
I will probably simplify this on a future release by adding it as a attribute in the processor at load time 👌🏽
So we can avoid this type of issues.
Thanks. I'm not sure how I was supposed to know that, and I'm still not sure what I was supposed to know. I don't use nanolava when I can use the full fat version.
I was kind of hoping that whatever needed to be done was done under the hood... particularly in the absence of documentation to the contrary.
My bad!
I promise, I'm working on it :)
Using the latest versions of mlx and mlx_vlm, on
I get: