BinaryOptionsTools is a powerful suite of tools designed to enhance your binary options trading experience. Whether you're looking for analysis, strategy optimization, or execution tools, this project provides a variety of solutions to help you make informed trading decisions.
This is an example issue, under here there should be a script
from BinaryOptionsTools import pocketoption
import ta
import time
# import pandas as pd
ssid = input("Enter your ssid: ")
demo = not bool(int(input("Do you want to use demo or real account? (0: demo, 1: real) ")))
api = pocketoption(ssid, demo)
def GetCandles(symbol, timeframe, limit=100):
# Fetch candle data for a given symbol and timeframe
candles = api.GetCandles(symbol, timeframe, limit)
#df['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') # Assuming 'timestamp' is in seconds
return candles
def DetectSMAsimple(symbol, timeframe, period=14):
# Fetch the candles for the given symbol and timeframe
df = api.GetCandles(symbol, timeframe)
print(f"DF: {df}")
# Calculate the simple moving average using the 'close' price
df['SMA'] = ta.trend.sma_indicator(df['close'], window=period)
# Check if last SMA is bullish or bearish
if df['SMA'].iloc[-1] > df['close'].iloc[-2]: # Bullish
return "Bullish"
elif df['SMA'].iloc[-1] < df['close'].iloc[-2]: # Bearish
return "Bearish"
else:
return "Neutral"
def DetectSMAStream(symbol, timeframe, period=14, interval=60):
# Continuously fetch and detect SMA trend
while True:
result = DetectSMAsimple(symbol, timeframe, period)
print(f"SMA Trend: {result}")
# Wait for the next update (based on interval)
time.sleep(interval)
# Detect SMA once
print(DetectSMAsimple("EURUSD_otc", 1))
# Stream SMA trend detection every minute
DetectSMAStream("EURUSD_otc", 1, interval=60)
#NOTE: DetectSMAsimple is just the basic calculation and DetectSMAStream is like a stream of data, constantly detecting sma and if last sma was bullish or bearish
This is an example issue, under here there should be a script