DataDog / datadog-agent

Main repository for Datadog Agent
https://docs.datadoghq.com/
Apache License 2.0
3.03k stars 1.26k forks source link

Final updates for release.json and Go modules for 7.62.3 release #34027

Closed FlorentClarret closed 1 month ago

FlorentClarret commented 1 month ago

What does this PR do?

Motivation

Describe how you validated your changes

Possible Drawbacks / Trade-offs

Additional Notes

cit-pr-commenter[bot] commented 1 month ago

Regression Detector

Regression Detector Results

Metrics dashboard
Target profiles
Run ID: b26092b6-ea25-4946-a83a-3e6fe0cf234e

Baseline: f2df43696113198633ef6406264ee09f5099c304 Comparison: f2df43696113198633ef6406264ee09f5099c304 Diff

Optimization Goals: ✅ No significant changes detected

Fine details of change detection per experiment

| perf | experiment | goal | Δ mean % | Δ mean % CI | trials | links | |------|----------------------------------------------|--------------------|----------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ➖ | tcp_syslog_to_blackhole | ingress throughput | +0.66 | [+0.59, +0.74] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Atcp_syslog_to_blackhole%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | quality_gate_idle | memory utilization | +0.47 | [+0.42, +0.52] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Aquality_gate_idle%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle&tpl_var_job_id%5B0%5D=b26092b6-ea25-4946-a83a-3e6fe0cf234e&tpl_var_run-id%5B0%5D=b26092b6-ea25-4946-a83a-3e6fe0cf234e&view=spans&from_ts=1739477225000&to_ts=1739477825000&live=false) | | ➖ | file_tree | memory utilization | +0.44 | [+0.39, +0.49] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_tree%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | file_to_blackhole_1000ms_latency_linear_load | egress throughput | +0.43 | [-0.03, +0.90] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_1000ms_latency_linear_load%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | quality_gate_idle_all_features | memory utilization | +0.17 | [+0.09, +0.24] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Aquality_gate_idle_all_features%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle_all_features&tpl_var_job_id%5B0%5D=b26092b6-ea25-4946-a83a-3e6fe0cf234e&tpl_var_run-id%5B0%5D=b26092b6-ea25-4946-a83a-3e6fe0cf234e&view=spans&from_ts=1739477225000&to_ts=1739477825000&live=false) | | ➖ | file_to_blackhole_1000ms_latency | egress throughput | +0.10 | [-0.68, +0.87] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_1000ms_latency%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | file_to_blackhole_0ms_latency_http2 | egress throughput | +0.09 | [-0.75, +0.93] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_0ms_latency_http2%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | file_to_blackhole_0ms_latency | egress throughput | +0.04 | [-0.80, +0.89] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_0ms_latency%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | file_to_blackhole_0ms_latency_http1 | egress throughput | +0.03 | [-0.86, +0.91] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_0ms_latency_http1%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | file_to_blackhole_100ms_latency | egress throughput | +0.01 | [-0.71, +0.73] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_100ms_latency%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | tcp_dd_logs_filter_exclude | ingress throughput | -0.00 | [-0.02, +0.01] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Atcp_dd_logs_filter_exclude%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | uds_dogstatsd_to_api | ingress throughput | -0.01 | [-0.25, +0.23] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Auds_dogstatsd_to_api%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | file_to_blackhole_300ms_latency | egress throughput | -0.04 | [-0.69, +0.60] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_300ms_latency%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | file_to_blackhole_500ms_latency | egress throughput | -0.12 | [-0.90, +0.66] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_500ms_latency%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | quality_gate_logs | % cpu utilization | -0.93 | [-4.00, +2.14] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Aquality_gate_logs%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) | | ➖ | uds_dogstatsd_to_api_cpu | % cpu utilization | -2.23 | [-3.13, -1.33] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Auds_dogstatsd_to_api_cpu%20run_id%3Ab26092b6-ea25-4946-a83a-3e6fe0cf234e&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1739470025000&to_ts=1739481425000&live=false) |

Bounds Checks: ❌ Failed

perf experiment bounds_check_name replicates_passed links
quality_gate_idle memory_usage 9/10 bounds checks dashboard
file_to_blackhole_0ms_latency lost_bytes 10/10
file_to_blackhole_0ms_latency memory_usage 10/10
file_to_blackhole_0ms_latency_http1 lost_bytes 10/10
file_to_blackhole_0ms_latency_http1 memory_usage 10/10
file_to_blackhole_0ms_latency_http2 lost_bytes 10/10
file_to_blackhole_0ms_latency_http2 memory_usage 10/10
file_to_blackhole_1000ms_latency memory_usage 10/10
file_to_blackhole_1000ms_latency_linear_load memory_usage 10/10
file_to_blackhole_100ms_latency lost_bytes 10/10
file_to_blackhole_100ms_latency memory_usage 10/10
file_to_blackhole_300ms_latency lost_bytes 10/10
file_to_blackhole_300ms_latency memory_usage 10/10
file_to_blackhole_500ms_latency lost_bytes 10/10
file_to_blackhole_500ms_latency memory_usage 10/10
quality_gate_idle_all_features memory_usage 10/10 bounds checks dashboard
quality_gate_logs lost_bytes 10/10
quality_gate_logs memory_usage 10/10

Explanation

**Confidence level:** 90.00% **Effect size tolerance:** |Δ mean %| ≥ 5.00% Performance changes are noted in the **perf** column of each table: * ✅ = significantly better comparison variant performance * ❌ = significantly worse comparison variant performance * ➖ = no significant change in performance A regression test is an A/B test of target performance in a repeatable rig, where "performance" is measured as "comparison variant minus baseline variant" for an optimization goal (e.g., ingress throughput). Due to intrinsic variability in measuring that goal, we can only estimate its mean value for each experiment; we report uncertainty in that value as a 90.00% confidence interval denoted "Δ mean % CI". For each experiment, we decide whether a change in performance is a "regression" -- a change worth investigating further -- if all of the following criteria are true: 1. Its estimated |Δ mean %| ≥ 5.00%, indicating the change is big enough to merit a closer look. 2. Its 90.00% confidence interval "Δ mean % CI" does not contain zero, indicating that *if our statistical model is accurate*, there is at least a 90.00% chance there is a difference in performance between baseline and comparison variants. 3. Its configuration does not mark it "erratic".

CI Pass/Fail Decision

Failed. Some Quality Gates were violated.