GoldenCheetah / scikit-sports

Sports analysis library for Python
https://scikit-sports.readthedocs.io/en/latest/
MIT License
42 stars 10 forks source link
data-science sports

Scikit-sports

.. image:: https://travis-ci.org/GoldenCheetah/scikit-sports.svg?branch=master :target: https://travis-ci.org/GoldenCheetah/scikit-sports

.. image:: https://ci.appveyor.com/api/projects/status/tei5gfnma8uxf7u8?svg=true :target: https://ci.appveyor.com/project/glemaitre/scikit-sports

.. image:: https://readthedocs.org/projects/scikit-sports/badge/?version=latest :target: https://scikit-sports.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

.. image:: https://codecov.io/gh/GoldenCheetah/scikit-sports/branch/master/graph/badge.svg :target: https://codecov.io/gh/GoldenCheetah/scikit-sports

Installation

Dependencies


Scikit-sports requires:

* scipy
* numpy
* pandas
* six
* fit-parse
* joblib
* scikit-learn

Installation

scikit-sports is currently available on the PyPi’s reporitories and you can install it via pip::

pip install -U scikit-sports

The package is release also in conda-forge::

conda install -c conda-forge scikit-sports

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from Github and install all dependencies::

git clone https://github.com/scikit-sports/scikit-sports.git cd scikit-sports pip install .

Or install using pip and GitHub::

pip install -U git+https://github.com/scikit-sports/scikit-sports.git