GrahamDumpleton / wrapt

A Python module for decorators, wrappers and monkey patching.
BSD 2-Clause "Simplified" License
2.06k stars 231 forks source link

Can't execute multiprocessing tasks using wrapt.decorator functions - not pickle serializable #158

Open marwan116 opened 4 years ago

marwan116 commented 4 years ago

I am posting this to share the issue I face when trying to use multiple processes with a function wrapped with a wrapt.decorator.

I am using the following libraries: wrapt==1.12.1 joblib=0.14.1 python=3.7.6

Please see the dummy example below to reproduce the error

from joblib import Parallel, delayed
import wrapt

@wrapt.decorator
def dummy_decorator(wrapped, instance, args, kwargs):
    print("before wrapped call")
    res = wrapped(*args, **kwargs)
    print("after wrapped call")
    return res

@dummy_decorator
def add(x, y):
    return x + y

So first I try the code using multithreading and it works fine

with Parallel(n_jobs=2, prefer="threads") as parallel:
    fs = parallel(delayed(add)(x=x, y=y) for x, y in zip([1, 2], [3, 4]))
    for f in fs:
        print(f)

I get the following output:

before wrapped call
before wrapped call
after wrapped call
after wrapped call
4
6

Then when I try to use processes instead of threads:

with Parallel(n_jobs=2, prefer="processes") as parallel:
    fs = parallel(delayed(add)(x=x, y=y) for x, y in zip([1, 2], [3, 4]))
    for f in fs:
        print(f)

I get an error mainly: NotImplementedError: object proxy must define __reduce_ex__()

below is the full traceback:

joblib.externals.loky.process_executor._RemoteTraceback: 
"""
Traceback (most recent call last):
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/site-packages/joblib/externals/loky/backend/queues.py", line 150, in _feed
    obj_ = dumps(obj, reducers=reducers)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/site-packages/joblib/externals/loky/backend/reduction.py", line 247, in dumps
    dump(obj, buf, reducers=reducers, protocol=protocol)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/site-packages/joblib/externals/loky/backend/reduction.py", line 240, in dump
    _LokyPickler(file, reducers=reducers, protocol=protocol).dump(obj)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/site-packages/joblib/externals/cloudpickle/cloudpickle.py", line 482, in dump
    return Pickler.dump(self, obj)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 437, in dump
    self.save(obj)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 549, in save
    self.save_reduce(obj=obj, *rv)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 662, in save_reduce
    save(state)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 549, in save
    self.save_reduce(obj=obj, *rv)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 662, in save_reduce
    save(state)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 890, in _batch_setitems
    save(v)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 549, in save
    self.save_reduce(obj=obj, *rv)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 662, in save_reduce
    save(state)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 819, in save_list
    self._batch_appends(obj)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 846, in _batch_appends
    save(tmp[0])
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 774, in save_tuple
    save(element)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/pickle.py", line 524, in save
    rv = reduce(self.proto)
NotImplementedError: object proxy must define __reduce_ex__()
"""

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "ifm_utils/logging/dummy.py", line 24, in <module>
    fs = parallel(delayed(add)(x=x, y=y) for x, y in zip([1, 2], [3, 4]))
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/site-packages/joblib/parallel.py", line 1017, in __call__
    self.retrieve()
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/site-packages/joblib/parallel.py", line 909, in retrieve
    self._output.extend(job.get(timeout=self.timeout))
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 562, in wrap_future_result
    return future.result(timeout=timeout)
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/concurrent/futures/_base.py", line 435, in result
    return self.__get_result()
  File "/Users/marwansarieddine/anaconda3/envs/ifm_utils/lib/python3.7/concurrent/futures/_base.py", line 384, in __get_result
    raise self._exception
_pickle.PicklingError: Could not pickle the task to send it to the workers.
marwan116 commented 4 years ago

I thought a workaround to the problem, if it is too hard to fix this, would be to disable the decorator and the following workaround works if the value passed toenabled is not a callable

@wrapt.decorator(enabled=False)
def dummy_decorator(wrapped, instance, args, kwargs):
    print("before wrapped call")
    res = wrapped(*args, **kwargs)
    print("after wrapped call")
    return res

then the below won't code throw any error

with Parallel(n_jobs=2, prefer="processes") as parallel:
    fs = parallel(delayed(add)(x=x, y=y) for x, y in zip([1, 2], [3, 4]))
    for f in fs:
        print(f)

however - to dynamically set enabled, I thought using a callable _enabled would be the way to go and this sadly doesn't work:

def _enabled():
    return False

@wrapt.decorator(enabled=_enabled)
def dummy_decorator(wrapped, instance, args, kwargs):
    print("before wrapped call")
    res = wrapped(*args, **kwargs)
    print("after wrapped call")
    return res

I see on other issue threads (mainly https://github.com/GrahamDumpleton/wrapt/issues/102) that perhaps an ObjectProxy is picklable/serializable if we explicitly define the __reduce__ and __reduce_ex__ methods - would this be the workaround needed here - i.e. to implement the decorator as a wrapper instead?

GrahamDumpleton commented 4 years ago

For dynamic function to specify whether enabled, should be:

def _enabled():
    return False

@wrapt.decorator(enabled=_enabled)
def dummy_decorator(wrapped, instance, args, kwargs):
    print("before wrapped call")
    res = wrapped(*args, **kwargs)
    print("after wrapped call")
    return res

Not sure if you just cut and paste the wrong thing.

But yes, it may not work as the function wrapper is still present when disabled using a function call, as is only evaluated at the time of the call. For the decorator to be applied at all, can only supply literal value.

def _enabled():
    return False

am_i_enabled = _enabled()

@wrapt.decorator(enabled=am_i_enabled)
def dummy_decorator(wrapped, instance, args, kwargs):
    print("before wrapped call")
    res = wrapped(*args, **kwargs)
    print("after wrapped call")
    return res

So call has to be evaluated at time of code import.

Anyway, I will think about pickle issue. For this narrow case of a function wrapper decorator (as opposed to general case of object proxy), there may be a way to get it to work. Will need some investigation though. The analysis was never done for dill since that was a third party package, and so not necessarily commonly used.

marwan116 commented 4 years ago

Sorry yes I had a typo there - just edited/corrected it ...

For this narrow case of a function wrapper decorator (as opposed to general case of object proxy), there may be a way to get it to work

This would be extremely helpful - thank you for this - please let me know if I can help in the process in any way.

ludaavics commented 2 years ago

Hi @marwan116

have you given this any more thought?

twiddli commented 8 months ago

The error I'm getting on python 3.11 is that AdapterWrapper does not define a __reduce_ex__. For starters, it would be helpful to have a way we can provide custom adapter wrappers, in the same way adapter factory works. This would allow the end user to implement their own __reduce_ex__ that suits their needs. What do you think?

Or just add the following to it:

def __reduce_ex__( self, protocol ):
    return (
        object.__new__,
        (type(self),),
        object.__getstate__(self),
        )
GrahamDumpleton commented 8 months ago

@twiddli I would need to see an actual small code example of what you are trying to do to suggest anything including any explanation if it can already be done as not sure what I am trying to suggest a modification to.

FWIW. Trying to pickle code is not generally a great idea. And there is no generic single __reduce_ex__ function one could add to the wrapper which would be guaranteed to always work.