As part of checking this package against the development version of dplyr, soon to become dplyr 0.8.1, I have noticed this failure;:
[master*] 408.5 MiB ❯ revdep_details(revdep = "healthcareai")
══ Reverse dependency check ════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════ healthcareai 2.3.0 ══
Status: BROKEN
── Newly failing
✖ checking examples ... ERROR
── Before ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
0 errors ✔ | 0 warnings ✔ | 0 notes ✔
── After ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
❯ checking examples ... ERROR
Running examples in ‘healthcareai-Ex.R’ failed
The error most likely occurred in:
> ### Name: explore
> ### Title: Explore a model's "reasoning" via counterfactual predictions
> ### Aliases: explore
>
> ### ** Examples
>
> # First, we need a model on which to make counterfactual predictions
> set.seed(5176)
> m <- machine_learn(pima_diabetes, patient_id, outcome = diabetes,
+ tune = FALSE, models = "xgb")
Training new data prep recipe...
Variable(s) ignored in prep_data won't be used to tune models: patient_id
diabetes looks categorical, so training classification algorithms.
After data processing, models are being trained on 12 features with 768 observations.
Based on n_folds = 5 and hyperparameter settings, the following number of models will be trained: 5 xgb's
Training at fixed values: eXtreme Gradient Boosting
1 error ✖ | 0 warnings ✔ | 0 notes ✔
As part of checking this package against the development version of dplyr, soon to become dplyr 0.8.1, I have noticed this failure;:
I have not looked at it in details yet.