torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 30.10 GiB. GPU 0 has a total capacty of 79.14 GiB of which 1.72 GiB is free. Including non-PyTorch memory, this process has 77.39 GiB memory in use. Of the allocated memory 76.34 GiB is allocated by PyTorch, and 332.09 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
I successfully ran llava_llama3_8b_full_CLIP_lora training about two months ago. Now when I re-ran the code at that time, the video memory was out of memory, and it seems to require more than 110GB of video memory. What might be the cause? How to solve it?
The configuration code is as follows:
Copyright (c) OpenMMLab. All rights reserved.
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,
CLIPImageProcessor, CLIPVisionModel)
from xtuner.dataset import ConcatDataset, LLaVADataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook
from xtuner.engine.runner import TrainLoop
from xtuner.model import LLaVAModel
from xtuner.utils import PROMPT_TEMPLATE
import torch
#######################################################################
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
configure environment
env_cfg = dict(
whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
set visualizer
visualizer = None
set log level
log_level = 'INFO'
load from which checkpoint
load_from = None
whether to resume training from the loaded checkpoint
resume = False
Defaults to use random seed and disable deterministic
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 30.10 GiB. GPU 0 has a total capacty of 79.14 GiB of which 1.72 GiB is free. Including non-PyTorch memory, this process has 77.39 GiB memory in use. Of the allocated memory 76.34 GiB is allocated by PyTorch, and 332.09 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
I successfully ran llava_llama3_8b_full_CLIP_lora training about two months ago. Now when I re-ran the code at that time, the video memory was out of memory, and it seems to require more than 110GB of video memory. What might be the cause? How to solve it? The configuration code is as follows:
Copyright (c) OpenMMLab. All rights reserved.
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, LoggerHook, ParamSchedulerHook) from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR from peft import LoraConfig from torch.optim import AdamW from transformers import (AutoModelForCausalLM, AutoTokenizer, CLIPImageProcessor, CLIPVisionModel)
from xtuner.dataset import ConcatDataset, LLaVADataset from xtuner.dataset.collate_fns import default_collate_fn from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory from xtuner.dataset.samplers import LengthGroupedSampler from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook from xtuner.engine.runner import TrainLoop from xtuner.model import LLaVAModel from xtuner.utils import PROMPT_TEMPLATE import torch #######################################################################
PART 1 Settings
#######################################################################
Model
llm_name_or_path = './llama3.1-8b-instruct' visual_encoder_name_or_path = './clip-vit-large-patch14-336'
Specify the pretrained pth
pretrained_pth = './work_dirs/llava_llama3_8b_instruct_clip_vit_large_p14_336_e1_gpu8_sharegpt4v_pretrain/iter_24000.pth' # noqa: E501
Data
data_root = ''
sharegpt4v_caption_data_path = data_root + './finetune.json' # noqa: E501 sharegpt4v_caption_image_folder = ''
prompt_template = PROMPT_TEMPLATE.llama3_chat max_length = int(4096 - (336 / 14)**2)
Scheduler & Optimizer
batch_size = 1 # per_device accumulative_counts = 1 dataloader_num_workers = 4 max_epochs = 1 optim_type = AdamW lr = 5e-6 betas = (0.9, 0.999) weight_decay = 0 max_norm = 1 # grad clip warmup_ratio = 0.03
Save
save_steps = 300 save_total_limit = 3 # Maximum checkpoints to keep (-1 means unlimited)
Evaluate the generation performance during the training
evaluation_freq = 300 SYSTEM = '' evaluation_images = './synpic21776.jpg' evaluation_inputs = ['照片中是什么症状?', 'Please describe this picture']
#######################################################################
PART 2 Model & Tokenizer & Image Processor
####################################################################### tokenizer = dict( type=AutoTokenizer.from_pretrained, pretrained_model_name_or_path=llm_name_or_path, trust_remote_code=True, padding_side='right')
image_processor = dict( type=CLIPImageProcessor.from_pretrained, pretrained_model_name_or_path=visual_encoder_name_or_path, trust_remote_code=True)
model = dict( type=LLaVAModel, freeze_llm=False, freeze_visual_encoder=True, pretrained_pth=pretrained_pth, llm=dict( type=AutoModelForCausalLM.from_pretrained, pretrained_model_name_or_path=llm_name_or_path,
torch_dtype=torch.float16,
#######################################################################
PART 3 Dataset & Dataloader
####################################################################### sharegpt4v_caption_dataset = dict( type=LLaVADataset, data_path=sharegpt4v_caption_data_path, image_folder=sharegpt4v_caption_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
train_dataset = dict( type=ConcatDataset, datasets=[ sharegpt4v_caption_dataset, ])
train_dataloader = dict( batch_size=batch_size, num_workers=dataloader_num_workers, pin_memory=True, dataset=train_dataset, sampler=dict( type=LengthGroupedSampler, length_property='modality_length', per_device_batch_size=batch_size * accumulative_counts), collate_fn=dict(type=default_collate_fn))
#######################################################################
PART 4 Scheduler & Optimizer
#######################################################################
optimizer
optim_wrapper = dict( type=AmpOptimWrapper, optimizer=dict( type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), accumulative_counts=accumulative_counts, loss_scale='dynamic', dtype='float16')
learning policy
More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [ dict( type=LinearLR, start_factor=1e-5, by_epoch=True, begin=0, end=warmup_ratio max_epochs, convert_to_iter_based=True), dict( type=CosineAnnealingLR, eta_min=0.0, by_epoch=True, begin=warmup_ratio max_epochs, end=max_epochs, convert_to_iter_based=True) ]
train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
#######################################################################
PART 5 Runtime
#######################################################################
Log the dialogue periodically during the training process, optional
custom_hooks = [ dict(type=DatasetInfoHook, tokenizer=tokenizer), dict( type=EvaluateChatHook, tokenizer=tokenizer, image_processor=image_processor, every_n_iters=evaluation_freq, evaluation_inputs=evaluation_inputs, evaluation_images=evaluation_images, system=SYSTEM, prompt_template=prompt_template) ]
configure default hooks
default_hooks = dict(
record the time of every iteration.
)
configure environment
env_cfg = dict(
whether to enable cudnn benchmark
)
set visualizer
visualizer = None
set log level
log_level = 'INFO'
load from which checkpoint
load_from = None
whether to resume training from the loaded checkpoint
resume = False
Defaults to use random seed and disable
deterministic
randomness = dict(seed=None, deterministic=False)
set log processor
log_processor = dict(by_epoch=False)