Closed laijirong closed 2 weeks ago
maybe you can refer: #9
maybe you can refer: #9
Thanks for replying! I checked my environment, and installed extra components, so that I have the nvcc
version 11.3 installed, however it still not work.
>>> print(torch.__version__)
1.10.1
>>> print(torch.cuda.is_available())
True
>>> print(torch.version.cuda)
11.3
>>> print(torch.backends.cudnn.version())
8200
The cuda components is show belowed
python -c "import torch.utils.cpp_extension;print(torch.utils.cpp_extension.CUDA_HOME)"
/share/home/***/miniconda3/envs/autohic
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Sun_Mar_21_19:15:46_PDT_2021
Cuda compilation tools, release 11.3, V11.3.58
Build cuda_11.3.r11.3/compiler.29745058_0
conda list | grep cu
cuda 11.3.0 h3b286be_0 nvidia
cuda-command-line-tools 11.3.0 h3b286be_0 nvidia
cuda-compiler 11.3.0 h3b286be_0 nvidia
cuda-cudart 11.3.58 hc1aae59_0 nvidia
cuda-cuobjdump 11.3.58 hc78e225_0 nvidia
cuda-cupti 11.3.58 h9a3dd33_0 nvidia
cuda-cuxxfilt 11.3.58 he670d9e_0 nvidia
cuda-gdb 11.3.58 h531059a_0 nvidia
cuda-libraries 11.3.0 h3b286be_0 nvidia
cuda-libraries-dev 11.3.0 h3b286be_0 nvidia
cuda-memcheck 11.8.86 0 nvidia
cuda-nvcc 11.3.58 h2467b9f_0 nvidia
cuda-nvdisasm 11.3.58 hd2ea46e_0 nvidia
cuda-nvml-dev 12.4.127 0 nvidia
cuda-nvprof 11.3.58 h860cd9e_0 nvidia
cuda-nvprune 11.3.58 hb917323_0 nvidia
cuda-nvrtc 11.3.58 he300756_0 nvidia
cuda-nvtx 11.3.58 h3fa534a_0 nvidia
cuda-nvvp 11.3.58 hd16380c_0 nvidia
cuda-runtime 11.3.0 h3b286be_0 nvidia
cuda-samples 11.6.101 h8efea70_0 nvidia
cuda-sanitizer-api 11.3.58 h58da6c8_0 nvidia
cuda-thrust 11.4.43 h00096a5_0 nvidia
cuda-toolkit 11.3.0 h3b286be_0 nvidia
cuda-tools 11.3.0 h3b286be_0 nvidia
cuda-visual-tools 11.3.0 h3b286be_0 nvidia
cudatoolkit 11.3.1 h9edb442_11 conda-forge
cudnn 8.2.1 cuda11.3_0 defaults
libcublas 12.4.5.8 0 nvidia
libcufft 11.2.1.3 0 nvidia
libcurand 10.3.5.147 0 nvidia
libcusolver 11.6.1.9 0 nvidia
libcusparse 12.3.1.170 0 nvidia
ncurses 6.4 h6a678d5_0 defaults
pytorch 1.10.1 py3.9_cuda11.3_cudnn8.2.0_0 pytorch
pytorch-mutex 1.0 cuda pytorch
torchaudio 0.10.1 py39_cu113 pytorch
torchvision 0.11.2 py39_cu113 pytorch
Btw, as you mentioned in the #9, how can I switch to CPU method, I didn't find instructions in the docs, forgiving my careless. Thank you so much!
If you have a GPU and want to use it, you must install CUDA-11.3 and cuDNN-8.2 before. The easiest way to use the CPU is to install it on a machine without a GPU or use Docker
Thanks for replying! I'am sure that CUDA-11.3 and cuDNN-8.2 are installed, though they were installed by conda instead of package-manager or the run
package, or if you mean that I have to install these two packages in an existing environment first, then install these dependencies manually.😂
And I will try to install AutoHiC on another GPU-less machine.
Thank you so much for helping!🫡
Yes, you must install without conda for CUDA-11.3 and cuDNN-8.2. If using CPU is acceptable to you, it is recommended.
Thank you for developing such an amazing tool, I followed the instructions and installed it on our lab's cluster.However when it run for about one day, it quit with such error
RuntimeError: nms is not compiled with GPU support
. I am sure that I've installed all the requirements(followed by the steps), and checked it on the search engine, but the problem still exists.Some of the logs looks like below:
Looking forward for your reply.