Closed nightandweather closed 1 year ago
Hello! Have you solved your problem? I met the same question as you did.
Quite an old post but replying in case it helps anyone else.
reg_transform
does not have arguments called ccp2def
of def2disp
. Instead the type of transformation parametrisation is encoded within the nifti file directly.
The reg_transform
options, from the -help
argument are as follows:
Usage: reg_transform [OPTIONS].
* * OPTIONS * *
-ref <filename>
Filename of the reference image
The Reference image has to be specified when a cubic B-Spline parametrised control point grid is used*.
-ref2 <filename>
Filename of the second reference image to be used when dealing with composition
-def <filename1> <filename2>
Take a transformation of any recognised type* and compute the corresponding deformation field
filename1 - Input transformation file name
filename2 - Output deformation field file name
-disp <filename1> <filename2>
Take a transformation of any recognised type* and compute the corresponding displacement field
filename1 - Input transformation file name
filename2 - Output displacement field file name
-flow <filename1> <filename2>
Take a spline parametrised SVF and compute the corresponding flow field
filename1 - Input transformation file name
filename2 - Output flow field file name
-comp <filename1> <filename2> <filename3>
Compose two transformations of any recognised type* and returns a deformation field.
Trans3(x) = Trans2(Trans1(x)).
filename1 - Input transformation 1 file name (associated with -ref if required)
filename2 - Input transformation 2 file name (associated with -ref2 if required)
filename3 - Output deformation field file name
-land <filename1> <filename2> <filename3>
Apply a transformation to a set of landmark(s).
Landmarks are encoded in a text file with one landmark position (mm) per line:
<key1_x> <key1_y> <key1_z>
<key2_x> <key2_y> <key2_z>
filename1 - Input transformation file name
filename2 - Input landmark file name.
filename3 - Output landmark file name
-updSform <filename1> <filename2> <filename3>
Update the sform of an image using an affine transformation.
Filename1 - Image to be updated
Filename2 - Affine transformation defined as Affine x Reference = Floating
Filename3 - Updated image.
-invAff <filename1> <filename2>
Invert an affine matrix.
filename1 - Input affine transformation file name
filename2 - Output inverted affine transformation file name
-invNrr <filename1> <filename2> <filename3>
Invert a non-rigid transformation and save the result as a deformation field.
filename1 - Input transformation file name
filename2 - Input floating image where the inverted transformation is defined
filename3 - Output inverted transformation file name
Note that the cubic b-spline grid parametrisations can not be inverted without approximation,
as a result, they are converted into deformation fields before inversion.
-half <filename1> <filename2>
The input transformation is halfed and stored using the same transformation type.
filename1 - Input transformation file name
filename2 - Output transformation file name
-makeAff <rx> <ry> <rz> <tx> <ty> <tz> <sx> <sy> <sz> <shx> <shy> <shz> <outputFilename>
Create an affine transformation matrix
-aff2rig <filename1> <filename2>
Extract the rigid component from an affine transformation matrix
filename1 - Input transformation file name
filename2 - Output transformation file name
-flirtAff2NR <filename1> <filename2> <filename3> <filename4>
Convert a flirt (FSL) affine transformation to a NiftyReg affine transformation
filename1 - Input FLIRT (FSL) affine transformation file name
filename2 - Image used as a reference (-ref arg in FLIRT)
filename3 - Image used as a floating (-in arg in FLIRT)
filename4 - Output affine transformation file name
-omp <int>
Number of thread to use with OpenMP. [32/32]
--version
Print current version and exit (1.5.76)
* The supported transformation types are:
- cubic B-Spline parametrised grid (reference image is required)
- a dense deformation field
- a dense displacement field
- a cubic B-Spline parametrised stationary velocity field (reference image is required)
- a stationary velocity deformation field
- a stationary velocity displacement field
- an affine matrix
More insight on the transformation parametrisations can be found here: https://github.com/KCL-BMEIS/niftyreg/wiki/transformations
Hi, I'm following niftyreg code and registering in my own dataset. can i have advice in this situation?
dataset : 160 160 160 H/N CT images and organ structure
thank you