Estimators of sklearn module (KhiopsClassifier, KhiopsRegressor and KhiopsEncoder) do not support all parameters that are available in the train_ functions of core module. The objective is therefore to extend their constructors by introducing the missing parameters.
For KhiopsClassifier and KhiopsRegressor, the following parameters are going to be added:
max_evaluated_variables : int, default 0
Maximum number of variables to be evaluated in the SNB predictor training. If equal to 0 it evaluates all informative variables.
max_selected_variables : int, default 0
Maximum number of variables to be selected in the SNB predictor. If equal to 0 it selects all the variables kept in the
training.
construction_rules : list of str, optional
Allowed rules for the automatic variable construction. If not set it uses all possible rules.
specific_pairs : list of tuple, optional
User-specified pairs as a list of 2-tuples of variable names. If a given tuple contains only one non-empty string generated
within the maximum limit max_pairs.
all_possible_pairs : bool, default True
If True tries to create all possible pairs within the limit max_pairs.
The pairs and variables given in specific_pairs have priority.
group_target_value : bool, default False
Allows grouping of the target variable values in classification. It can substantially increase the training time.
For KhiopsEncoder, the following parameters are going to be added:
construction_rules : list of str, optional
Allowed rules for the automatic variable construction. If not set it uses all possible rules.
specific_pairs : list of tuple, optional
User-specified pairs as a list of 2-tuples of variable names. If a given tuple contains only one non-empty string generated
within the maximum limit max_pairs.
all_possible_pairs : bool, default True
If True tries to create all possible pairs within the limit max_pairs. The pairs and variables given in specific_pairs have priority.
group_target_value : bool, default False
Allows grouping of the target variable values in classification. It can substantially increase the training time.
informative_variables_only : bool, default True
If True keeps only informative variables.
pairs_recoding_method : str
Type of recoding for bivariate variables. Types available:
"part Id" (default): An id for the interval/group
"part label": A label for the interval/group
"0-1 binarization": A 0's and 1's coding the interval/group id
"conditional info": Conditional information of the interval/group
Estimators of
sklearn
module (KhiopsClassifier
,KhiopsRegressor
andKhiopsEncoder
) do not support all parameters that are available in thetrain_
functions ofcore
module. The objective is therefore to extend their constructors by introducing the missing parameters.KhiopsClassifier
andKhiopsRegressor
, the following parameters are going to be added:max_pairs
.True
IfTrue
tries to create all possible pairs within the limitmax_pairs
. The pairs and variables given inspecific_pairs
have priority.False
Allows grouping of the target variable values in classification. It can substantially increase the training time.KhiopsEncoder
, the following parameters are going to be added:max_pairs
.True
IfTrue
tries to create all possible pairs within the limitmax_pairs
. The pairs and variables given inspecific_pairs
have priority.False
Allows grouping of the target variable values in classification. It can substantially increase the training time.True
IfTrue
keeps only informative variables.