Closed nysp78 closed 2 years ago
Our total batch size is 8 (2 imgs / card x 4 cards) for both labeled and unlabeled images. The corresponding learning rate is 0.001. So if you only use a single card and the batch size is 8 / K
, the learning rate should also be 0.001 / K
. For example, if your batch size is 4 only with a single card, the learning rate then will be 0.0005.
I ran the unimatch with batch size 4 and initial lr 0.0005 on a single GPU for the 1/16 partition of pascal and I only took 75.50 mIOU. Τhere is any other trick I can do or perhaps the results can not be reproduced on a single GPU?
Please detail which backbone and cropping size are adopted. And what the reported result is.
[2022-11-25 16:02:33,141][ INFO] {'backbone': 'resnet101', 'batch_size': 4, 'conf_thresh': 0.95, 'criterion': {'kwargs': {'ignore_index': 255}, 'name': 'CELoss'}, 'crop_size': 321, 'data_root': /path/to/pascal, 'dataset': 'pascal', 'dilations': [6, 12, 18], 'epochs': 80, 'lr': 0.0005, 'lr_multi': 10.0, 'multi_grid': False, 'nclass': 21, 'replace_stride_with_dilation': [False, False, True]}
[2022-11-25 16:02:34,849][ INFO] Total params: 59.5M
[2022-11-25 16:02:37,349][ INFO] ===========> Epoch: 0, LR: 0.0005, Previous best: 0.00 [2022-11-25 16:02:45,618][ INFO] Iters: 0, Total loss: 1.575, Loss x: 3.150, Loss s: 0.000, Loss w_fp: 0.000, Mask: 0.000 [2022-11-25 16:05:12,455][ INFO] Iters: 310, Total loss: 0.556, Loss x: 1.075, Loss s: 0.052, Loss w_fp: 0.021, Mask: 0.222 [2022-11-25 16:07:39,331][ INFO] Iters: 620, Total loss: 0.450, Loss x: 0.855, Loss s: 0.071, Loss w_fp: 0.019, Mask: 0.292 [2022-11-25 16:10:06,300][ INFO] Iters: 930, Total loss: 0.395, Loss x: 0.740, Loss s: 0.082, Loss w_fp: 0.018, Mask: 0.327 [2022-11-25 16:12:33,237][ INFO] Iters: 1240, Total loss: 0.361, Loss x: 0.668, Loss s: 0.090, Loss w_fp: 0.019, Mask: 0.366 [2022-11-25 16:14:58,762][ INFO] Iters: 1550, Total loss: 0.338, Loss x: 0.618, Loss s: 0.096, Loss w_fp: 0.019, Mask: 0.385 [2022-11-25 16:17:24,090][ INFO] Iters: 1860, Total loss: 0.318, Loss x: 0.576, Loss s: 0.102, Loss w_fp: 0.019, Mask: 0.404 [2022-11-25 16:19:49,541][ INFO] Iters: 2170, Total loss: 0.303, Loss x: 0.543, Loss s: 0.107, Loss w_fp: 0.020, Mask: 0.422 [2022-11-25 16:25:08,569][ INFO] Evaluation original >>>> meanIOU: 56.33
[2022-11-25 16:25:09,356][ INFO] ===========> Epoch: 1, LR: 0.0005, Previous best: 56.33 [2022-11-25 16:25:10,444][ INFO] Iters: 0, Total loss: 0.115, Loss x: 0.136, Loss s: 0.165, Loss w_fp: 0.022, Mask: 0.721 [2022-11-25 16:27:37,508][ INFO] Iters: 310, Total loss: 0.182, Loss x: 0.276, Loss s: 0.151, Loss w_fp: 0.024, Mask: 0.551 [2022-11-25 16:30:04,694][ INFO] Iters: 620, Total loss: 0.180, Loss x: 0.274, Loss s: 0.148, Loss w_fp: 0.022, Mask: 0.563 [2022-11-25 16:32:31,996][ INFO] Iters: 930, Total loss: 0.180, Loss x: 0.274, Loss s: 0.150, Loss w_fp: 0.022, Mask: 0.573 [2022-11-25 16:34:59,147][ INFO] Iters: 1240, Total loss: 0.176, Loss x: 0.265, Loss s: 0.151, Loss w_fp: 0.022, Mask: 0.584 [2022-11-25 16:37:26,400][ INFO] Iters: 1550, Total loss: 0.170, Loss x: 0.255, Loss s: 0.149, Loss w_fp: 0.022, Mask: 0.590 [2022-11-25 16:39:53,906][ INFO] Iters: 1860, Total loss: 0.169, Loss x: 0.252, Loss s: 0.150, Loss w_fp: 0.021, Mask: 0.595 [2022-11-25 16:42:21,170][ INFO] Iters: 2170, Total loss: 0.167, Loss x: 0.249, Loss s: 0.150, Loss w_fp: 0.021, Mask: 0.598 [2022-11-25 16:45:43,356][ INFO] Evaluation original >>>> meanIOU: 65.14
[2022-11-25 16:45:43,982][ INFO] ===========> Epoch: 2, LR: 0.0005, Previous best: 65.14 [2022-11-25 16:45:45,041][ INFO] Iters: 0, Total loss: 0.065, Loss x: 0.053, Loss s: 0.147, Loss w_fp: 0.008, Mask: 0.330 [2022-11-25 16:48:12,148][ INFO] Iters: 310, Total loss: 0.148, Loss x: 0.211, Loss s: 0.148, Loss w_fp: 0.020, Mask: 0.639 [2022-11-25 16:50:39,326][ INFO] Iters: 620, Total loss: 0.146, Loss x: 0.206, Loss s: 0.150, Loss w_fp: 0.021, Mask: 0.637 [2022-11-25 16:53:06,565][ INFO] Iters: 930, Total loss: 0.146, Loss x: 0.207, Loss s: 0.148, Loss w_fp: 0.020, Mask: 0.636 [2022-11-25 16:55:33,742][ INFO] Iters: 1240, Total loss: 0.142, Loss x: 0.201, Loss s: 0.148, Loss w_fp: 0.020, Mask: 0.640 [2022-11-25 16:58:00,975][ INFO] Iters: 1550, Total loss: 0.141, Loss x: 0.198, Loss s: 0.148, Loss w_fp: 0.020, Mask: 0.642 [2022-11-25 17:00:28,034][ INFO] Iters: 1860, Total loss: 0.139, Loss x: 0.194, Loss s: 0.146, Loss w_fp: 0.020, Mask: 0.646 [2022-11-25 17:02:55,229][ INFO] Iters: 2170, Total loss: 0.138, Loss x: 0.193, Loss s: 0.145, Loss w_fp: 0.019, Mask: 0.648 [2022-11-25 17:06:12,677][ INFO] Evaluation original >>>> meanIOU: 66.59
[2022-11-25 17:06:13,541][ INFO] ===========> Epoch: 3, LR: 0.0005, Previous best: 66.59 [2022-11-25 17:06:14,564][ INFO] Iters: 0, Total loss: 0.091, Loss x: 0.057, Loss s: 0.241, Loss w_fp: 0.009, Mask: 0.687 [2022-11-25 17:08:41,982][ INFO] Iters: 310, Total loss: 0.123, Loss x: 0.159, Loss s: 0.155, Loss w_fp: 0.019, Mask: 0.672 [2022-11-25 17:11:09,323][ INFO] Iters: 620, Total loss: 0.125, Loss x: 0.164, Loss s: 0.154, Loss w_fp: 0.018, Mask: 0.672 [2022-11-25 17:13:36,525][ INFO] Iters: 930, Total loss: 0.126, Loss x: 0.167, Loss s: 0.152, Loss w_fp: 0.018, Mask: 0.672 [2022-11-25 17:16:03,706][ INFO] Iters: 1240, Total loss: 0.126, Loss x: 0.169, Loss s: 0.149, Loss w_fp: 0.018, Mask: 0.669 [2022-11-25 17:18:30,888][ INFO] Iters: 1550, Total loss: 0.126, Loss x: 0.170, Loss s: 0.148, Loss w_fp: 0.018, Mask: 0.670 [2022-11-25 17:20:58,025][ INFO] Iters: 1860, Total loss: 0.125, Loss x: 0.168, Loss s: 0.147, Loss w_fp: 0.018, Mask: 0.670 [2022-11-25 17:23:25,015][ INFO] Iters: 2170, Total loss: 0.124, Loss x: 0.167, Loss s: 0.145, Loss w_fp: 0.018, Mask: 0.671 [2022-11-25 17:26:46,643][ INFO] Evaluation original >>>> meanIOU: 68.03
[2022-11-25 17:26:47,472][ INFO] ===========> Epoch: 4, LR: 0.0005, Previous best: 68.03 [2022-11-25 17:26:48,533][ INFO] Iters: 0, Total loss: 0.092, Loss x: 0.106, Loss s: 0.116, Loss w_fp: 0.039, Mask: 0.710 [2022-11-25 17:29:15,607][ INFO] Iters: 310, Total loss: 0.107, Loss x: 0.137, Loss s: 0.138, Loss w_fp: 0.015, Mask: 0.706 [2022-11-25 17:31:42,655][ INFO] Iters: 620, Total loss: 0.109, Loss x: 0.139, Loss s: 0.141, Loss w_fp: 0.016, Mask: 0.702 [2022-11-25 17:34:09,820][ INFO] Iters: 930, Total loss: 0.108, Loss x: 0.138, Loss s: 0.141, Loss w_fp: 0.016, Mask: 0.697 [2022-11-25 17:36:37,012][ INFO] Iters: 1240, Total loss: 0.107, Loss x: 0.137, Loss s: 0.138, Loss w_fp: 0.015, Mask: 0.699 [2022-11-25 17:39:04,242][ INFO] Iters: 1550, Total loss: 0.107, Loss x: 0.136, Loss s: 0.139, Loss w_fp: 0.015, Mask: 0.701 [2022-11-25 17:41:31,489][ INFO] Iters: 1860, Total loss: 0.107, Loss x: 0.137, Loss s: 0.138, Loss w_fp: 0.015, Mask: 0.703 [2022-11-25 17:43:58,650][ INFO] Iters: 2170, Total loss: 0.107, Loss x: 0.137, Loss s: 0.138, Loss w_fp: 0.015, Mask: 0.704 [2022-11-25 17:47:21,482][ INFO] Evaluation original >>>> meanIOU: 69.49
[2022-11-25 17:47:22,141][ INFO] ===========> Epoch: 5, LR: 0.0005, Previous best: 69.49 [2022-11-25 17:47:23,167][ INFO] Iters: 0, Total loss: 0.038, Loss x: 0.039, Loss s: 0.052, Loss w_fp: 0.022, Mask: 0.812 [2022-11-25 17:49:49,580][ INFO] Iters: 310, Total loss: 0.112, Loss x: 0.148, Loss s: 0.140, Loss w_fp: 0.015, Mask: 0.687 [2022-11-25 17:52:15,380][ INFO] Iters: 620, Total loss: 0.106, Loss x: 0.141, Loss s: 0.126, Loss w_fp: 0.014, Mask: 0.697 [2022-11-25 17:54:42,373][ INFO] Iters: 930, Total loss: 0.103, Loss x: 0.137, Loss s: 0.126, Loss w_fp: 0.014, Mask: 0.706 [2022-11-25 17:57:12,858][ INFO] Iters: 1240, Total loss: 0.102, Loss x: 0.134, Loss s: 0.124, Loss w_fp: 0.014, Mask: 0.708 [2022-11-25 17:59:44,193][ INFO] Iters: 1550, Total loss: 0.102, Loss x: 0.134, Loss s: 0.126, Loss w_fp: 0.014, Mask: 0.709 [2022-11-25 18:02:15,723][ INFO] Iters: 1860, Total loss: 0.102, Loss x: 0.134, Loss s: 0.128, Loss w_fp: 0.014, Mask: 0.708 [2022-11-25 18:04:47,196][ INFO] Iters: 2170, Total loss: 0.102, Loss x: 0.132, Loss s: 0.131, Loss w_fp: 0.014, Mask: 0.709 [2022-11-25 18:08:23,400][ INFO] Evaluation original >>>> meanIOU: 69.62
[2022-11-25 18:08:25,530][ INFO] ===========> Epoch: 6, LR: 0.0005, Previous best: 69.62 [2022-11-25 18:08:26,844][ INFO] Iters: 0, Total loss: 0.070, Loss x: 0.128, Loss s: 0.021, Loss w_fp: 0.001, Mask: 0.816 [2022-11-25 18:10:58,762][ INFO] Iters: 310, Total loss: 0.097, Loss x: 0.120, Loss s: 0.133, Loss w_fp: 0.013, Mask: 0.727 [2022-11-25 18:13:30,480][ INFO] Iters: 620, Total loss: 0.097, Loss x: 0.121, Loss s: 0.133, Loss w_fp: 0.013, Mask: 0.728 [2022-11-25 18:16:01,912][ INFO] Iters: 930, Total loss: 0.095, Loss x: 0.118, Loss s: 0.130, Loss w_fp: 0.014, Mask: 0.730 [2022-11-25 18:18:33,570][ INFO] Iters: 1240, Total loss: 0.094, Loss x: 0.117, Loss s: 0.131, Loss w_fp: 0.014, Mask: 0.730 [2022-11-25 18:21:05,225][ INFO] Iters: 1550, Total loss: 0.095, Loss x: 0.116, Loss s: 0.132, Loss w_fp: 0.014, Mask: 0.731 [2022-11-25 18:23:36,861][ INFO] Iters: 1860, Total loss: 0.095, Loss x: 0.116, Loss s: 0.134, Loss w_fp: 0.014, Mask: 0.733 [2022-11-25 18:26:08,254][ INFO] Iters: 2170, Total loss: 0.094, Loss x: 0.114, Loss s: 0.133, Loss w_fp: 0.014, Mask: 0.734 [2022-11-25 18:29:43,723][ INFO] Evaluation original >>>> meanIOU: 70.17
[2022-11-25 18:29:44,586][ INFO] ===========> Epoch: 7, LR: 0.0005, Previous best: 70.17 [2022-11-25 18:29:45,906][ INFO] Iters: 0, Total loss: 0.073, Loss x: 0.131, Loss s: 0.027, Loss w_fp: 0.005, Mask: 0.635 [2022-11-25 18:32:17,722][ INFO] Iters: 310, Total loss: 0.091, Loss x: 0.114, Loss s: 0.122, Loss w_fp: 0.013, Mask: 0.734 [2022-11-25 18:34:50,059][ INFO] Iters: 620, Total loss: 0.094, Loss x: 0.118, Loss s: 0.128, Loss w_fp: 0.013, Mask: 0.731 [2022-11-25 18:37:21,780][ INFO] Iters: 930, Total loss: 0.093, Loss x: 0.114, Loss s: 0.130, Loss w_fp: 0.013, Mask: 0.732 [2022-11-25 18:39:53,319][ INFO] Iters: 1240, Total loss: 0.092, Loss x: 0.114, Loss s: 0.128, Loss w_fp: 0.013, Mask: 0.734 [2022-11-25 18:42:25,440][ INFO] Iters: 1550, Total loss: 0.093, Loss x: 0.113, Loss s: 0.131, Loss w_fp: 0.013, Mask: 0.733 [2022-11-25 18:44:56,969][ INFO] Iters: 1860, Total loss: 0.092, Loss x: 0.112, Loss s: 0.130, Loss w_fp: 0.013, Mask: 0.733 [2022-11-25 18:47:28,275][ INFO] Iters: 2170, Total loss: 0.091, Loss x: 0.111, Loss s: 0.130, Loss w_fp: 0.013, Mask: 0.735 [2022-11-25 18:51:04,887][ INFO] Evaluation original >>>> meanIOU: 69.25
[2022-11-25 18:51:04,888][ INFO] ===========> Epoch: 8, LR: 0.0005, Previous best: 70.17 [2022-11-25 18:51:06,098][ INFO] Iters: 0, Total loss: 0.045, Loss x: 0.071, Loss s: 0.033, Loss w_fp: 0.006, Mask: 0.870 [2022-11-25 18:53:37,571][ INFO] Iters: 310, Total loss: 0.083, Loss x: 0.099, Loss s: 0.119, Loss w_fp: 0.014, Mask: 0.752 [2022-11-25 18:56:09,372][ INFO] Iters: 620, Total loss: 0.085, Loss x: 0.100, Loss s: 0.124, Loss w_fp: 0.014, Mask: 0.749 [2022-11-25 18:58:40,992][ INFO] Iters: 930, Total loss: 0.085, Loss x: 0.101, Loss s: 0.123, Loss w_fp: 0.014, Mask: 0.751 [2022-11-25 19:01:12,512][ INFO] Iters: 1240, Total loss: 0.085, Loss x: 0.102, Loss s: 0.123, Loss w_fp: 0.013, Mask: 0.749 [2022-11-25 19:03:43,991][ INFO] Iters: 1550, Total loss: 0.084, Loss x: 0.101, Loss s: 0.122, Loss w_fp: 0.013, Mask: 0.750 [2022-11-25 19:06:15,637][ INFO] Iters: 1860, Total loss: 0.083, Loss x: 0.100, Loss s: 0.120, Loss w_fp: 0.013, Mask: 0.751 [2022-11-25 19:08:46,753][ INFO] Iters: 2170, Total loss: 0.083, Loss x: 0.099, Loss s: 0.120, Loss w_fp: 0.013, Mask: 0.752 [2022-11-25 19:12:21,983][ INFO] Evaluation original >>>> meanIOU: 70.08
[2022-11-25 19:12:21,983][ INFO] ===========> Epoch: 9, LR: 0.0004, Previous best: 70.17 [2022-11-25 19:12:23,223][ INFO] Iters: 0, Total loss: 0.042, Loss x: 0.060, Loss s: 0.041, Loss w_fp: 0.006, Mask: 0.712 [2022-11-25 19:14:55,485][ INFO] Iters: 310, Total loss: 0.081, Loss x: 0.089, Loss s: 0.133, Loss w_fp: 0.014, Mask: 0.761 [2022-11-25 19:17:28,156][ INFO] Iters: 620, Total loss: 0.080, Loss x: 0.092, Loss s: 0.124, Loss w_fp: 0.013, Mask: 0.763 [2022-11-25 19:19:59,950][ INFO] Iters: 930, Total loss: 0.080, Loss x: 0.094, Loss s: 0.120, Loss w_fp: 0.013, Mask: 0.765 [2022-11-25 19:22:30,970][ INFO] Iters: 1240, Total loss: 0.080, Loss x: 0.094, Loss s: 0.119, Loss w_fp: 0.013, Mask: 0.764 [2022-11-25 19:25:03,080][ INFO] Iters: 1550, Total loss: 0.079, Loss x: 0.093, Loss s: 0.119, Loss w_fp: 0.012, Mask: 0.765 [2022-11-25 19:27:34,553][ INFO] Iters: 1860, Total loss: 0.079, Loss x: 0.093, Loss s: 0.118, Loss w_fp: 0.012, Mask: 0.763 [2022-11-25 19:30:05,906][ INFO] Iters: 2170, Total loss: 0.079, Loss x: 0.093, Loss s: 0.118, Loss w_fp: 0.012, Mask: 0.764 [2022-11-25 19:33:40,794][ INFO] Evaluation original >>>> meanIOU: 71.09
[2022-11-25 19:33:41,548][ INFO] ===========> Epoch: 10, LR: 0.0004, Previous best: 71.09 [2022-11-25 19:33:42,738][ INFO] Iters: 0, Total loss: 0.207, Loss x: 0.108, Loss s: 0.588, Loss w_fp: 0.026, Mask: 0.719 [2022-11-25 19:36:14,250][ INFO] Iters: 310, Total loss: 0.079, Loss x: 0.093, Loss s: 0.120, Loss w_fp: 0.011, Mask: 0.760 [2022-11-25 19:38:45,860][ INFO] Iters: 620, Total loss: 0.080, Loss x: 0.096, Loss s: 0.118, Loss w_fp: 0.011, Mask: 0.758 [2022-11-25 19:41:17,631][ INFO] Iters: 930, Total loss: 0.080, Loss x: 0.095, Loss s: 0.118, Loss w_fp: 0.011, Mask: 0.762 [2022-11-25 19:43:49,302][ INFO] Iters: 1240, Total loss: 0.080, Loss x: 0.096, Loss s: 0.116, Loss w_fp: 0.012, Mask: 0.761 [2022-11-25 19:46:21,250][ INFO] Iters: 1550, Total loss: 0.080, Loss x: 0.096, Loss s: 0.118, Loss w_fp: 0.012, Mask: 0.762 [2022-11-25 19:48:53,459][ INFO] Iters: 1860, Total loss: 0.080, Loss x: 0.095, Loss s: 0.118, Loss w_fp: 0.012, Mask: 0.760 [2022-11-25 19:51:25,058][ INFO] Iters: 2170, Total loss: 0.080, Loss x: 0.096, Loss s: 0.117, Loss w_fp: 0.012, Mask: 0.761 [2022-11-25 19:55:00,769][ INFO] Evaluation original >>>> meanIOU: 72.05
[2022-11-25 19:55:01,511][ INFO] ===========> Epoch: 11, LR: 0.0004, Previous best: 72.05 [2022-11-25 19:55:02,744][ INFO] Iters: 0, Total loss: 0.098, Loss x: 0.028, Loss s: 0.335, Loss w_fp: 0.003, Mask: 0.270 [2022-11-25 19:57:34,080][ INFO] Iters: 310, Total loss: 0.083, Loss x: 0.105, Loss s: 0.112, Loss w_fp: 0.011, Mask: 0.768 [2022-11-25 20:00:05,952][ INFO] Iters: 620, Total loss: 0.078, Loss x: 0.097, Loss s: 0.108, Loss w_fp: 0.011, Mask: 0.771 [2022-11-25 20:02:37,223][ INFO] Iters: 930, Total loss: 0.078, Loss x: 0.095, Loss s: 0.110, Loss w_fp: 0.011, Mask: 0.775 [2022-11-25 20:05:09,282][ INFO] Iters: 1240, Total loss: 0.077, Loss x: 0.093, Loss s: 0.112, Loss w_fp: 0.011, Mask: 0.773 [2022-11-25 20:07:41,667][ INFO] Iters: 1550, Total loss: 0.076, Loss x: 0.091, Loss s: 0.112, Loss w_fp: 0.011, Mask: 0.774 [2022-11-25 20:10:14,422][ INFO] Iters: 1860, Total loss: 0.077, Loss x: 0.090, Loss s: 0.116, Loss w_fp: 0.011, Mask: 0.774 [2022-11-25 20:12:46,237][ INFO] Iters: 2170, Total loss: 0.076, Loss x: 0.090, Loss s: 0.115, Loss w_fp: 0.011, Mask: 0.776 [2022-11-25 20:16:23,248][ INFO] Evaluation original >>>> meanIOU: 71.68
[2022-11-25 20:16:23,248][ INFO] ===========> Epoch: 12, LR: 0.0004, Previous best: 72.05 [2022-11-25 20:16:24,392][ INFO] Iters: 0, Total loss: 0.051, Loss x: 0.050, Loss s: 0.071, Loss w_fp: 0.034, Mask: 0.730 [2022-11-25 20:18:56,379][ INFO] Iters: 310, Total loss: 0.077, Loss x: 0.088, Loss s: 0.122, Loss w_fp: 0.011, Mask: 0.779 [2022-11-25 20:21:28,478][ INFO] Iters: 620, Total loss: 0.075, Loss x: 0.085, Loss s: 0.122, Loss w_fp: 0.011, Mask: 0.782 [2022-11-25 20:24:00,077][ INFO] Iters: 930, Total loss: 0.073, Loss x: 0.084, Loss s: 0.115, Loss w_fp: 0.011, Mask: 0.783 [2022-11-25 20:26:31,537][ INFO] Iters: 1240, Total loss: 0.074, Loss x: 0.084, Loss s: 0.117, Loss w_fp: 0.011, Mask: 0.782 [2022-11-25 20:29:03,227][ INFO] Iters: 1550, Total loss: 0.074, Loss x: 0.085, Loss s: 0.116, Loss w_fp: 0.011, Mask: 0.779 [2022-11-25 20:31:35,276][ INFO] Iters: 1860, Total loss: 0.074, Loss x: 0.085, Loss s: 0.115, Loss w_fp: 0.011, Mask: 0.779 [2022-11-25 20:34:06,577][ INFO] Iters: 2170, Total loss: 0.074, Loss x: 0.084, Loss s: 0.115, Loss w_fp: 0.011, Mask: 0.781 [2022-11-25 20:37:42,721][ INFO] Evaluation original >>>> meanIOU: 71.79
[2022-11-25 20:37:42,721][ INFO] ===========> Epoch: 13, LR: 0.0004, Previous best: 72.05 [2022-11-25 20:37:44,065][ INFO] Iters: 0, Total loss: 0.057, Loss x: 0.095, Loss s: 0.035, Loss w_fp: 0.004, Mask: 0.880 [2022-11-25 20:40:15,848][ INFO] Iters: 310, Total loss: 0.073, Loss x: 0.085, Loss s: 0.112, Loss w_fp: 0.009, Mask: 0.781 [2022-11-25 20:42:47,639][ INFO] Iters: 620, Total loss: 0.072, Loss x: 0.084, Loss s: 0.113, Loss w_fp: 0.010, Mask: 0.784 [2022-11-25 20:45:18,999][ INFO] Iters: 930, Total loss: 0.072, Loss x: 0.082, Loss s: 0.111, Loss w_fp: 0.010, Mask: 0.785 [2022-11-25 20:47:51,388][ INFO] Iters: 1240, Total loss: 0.072, Loss x: 0.083, Loss s: 0.112, Loss w_fp: 0.010, Mask: 0.785 [2022-11-25 20:50:23,184][ INFO] Iters: 1550, Total loss: 0.071, Loss x: 0.082, Loss s: 0.111, Loss w_fp: 0.011, Mask: 0.787 [2022-11-25 20:52:54,934][ INFO] Iters: 1860, Total loss: 0.071, Loss x: 0.083, Loss s: 0.109, Loss w_fp: 0.011, Mask: 0.789 [2022-11-25 20:55:26,701][ INFO] Iters: 2170, Total loss: 0.072, Loss x: 0.083, Loss s: 0.111, Loss w_fp: 0.010, Mask: 0.789 [2022-11-25 20:59:03,060][ INFO] Evaluation original >>>> meanIOU: 72.21
[2022-11-25 20:59:03,741][ INFO] ===========> Epoch: 14, LR: 0.0004, Previous best: 72.21 [2022-11-25 20:59:04,979][ INFO] Iters: 0, Total loss: 0.110, Loss x: 0.145, Loss s: 0.132, Loss w_fp: 0.016, Mask: 0.884 [2022-11-25 21:01:36,628][ INFO] Iters: 310, Total loss: 0.069, Loss x: 0.080, Loss s: 0.106, Loss w_fp: 0.011, Mask: 0.795 [2022-11-25 21:04:08,967][ INFO] Iters: 620, Total loss: 0.069, Loss x: 0.080, Loss s: 0.108, Loss w_fp: 0.011, Mask: 0.796 [2022-11-25 21:06:40,441][ INFO] Iters: 930, Total loss: 0.068, Loss x: 0.078, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.796 [2022-11-25 21:09:12,309][ INFO] Iters: 1240, Total loss: 0.069, Loss x: 0.080, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.794 [2022-11-25 21:11:44,643][ INFO] Iters: 1550, Total loss: 0.068, Loss x: 0.079, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.794 [2022-11-25 21:14:16,856][ INFO] Iters: 1860, Total loss: 0.068, Loss x: 0.078, Loss s: 0.107, Loss w_fp: 0.010, Mask: 0.793 [2022-11-25 21:16:48,650][ INFO] Iters: 2170, Total loss: 0.069, Loss x: 0.079, Loss s: 0.108, Loss w_fp: 0.010, Mask: 0.791 [2022-11-25 21:20:24,370][ INFO] Evaluation original >>>> meanIOU: 73.29
[2022-11-25 21:20:25,107][ INFO] ===========> Epoch: 15, LR: 0.0004, Previous best: 73.29 [2022-11-25 21:20:26,304][ INFO] Iters: 0, Total loss: 0.046, Loss x: 0.058, Loss s: 0.051, Loss w_fp: 0.018, Mask: 0.899 [2022-11-25 21:22:57,513][ INFO] Iters: 310, Total loss: 0.067, Loss x: 0.077, Loss s: 0.103, Loss w_fp: 0.009, Mask: 0.804 [2022-11-25 21:25:29,872][ INFO] Iters: 620, Total loss: 0.067, Loss x: 0.076, Loss s: 0.107, Loss w_fp: 0.010, Mask: 0.797 [2022-11-25 21:28:01,570][ INFO] Iters: 930, Total loss: 0.069, Loss x: 0.077, Loss s: 0.112, Loss w_fp: 0.010, Mask: 0.796 [2022-11-25 21:30:33,722][ INFO] Iters: 1240, Total loss: 0.069, Loss x: 0.078, Loss s: 0.112, Loss w_fp: 0.010, Mask: 0.793 [2022-11-25 21:33:05,826][ INFO] Iters: 1550, Total loss: 0.068, Loss x: 0.077, Loss s: 0.110, Loss w_fp: 0.010, Mask: 0.795 [2022-11-25 21:35:37,127][ INFO] Iters: 1860, Total loss: 0.068, Loss x: 0.077, Loss s: 0.111, Loss w_fp: 0.010, Mask: 0.795 [2022-11-25 21:38:09,178][ INFO] Iters: 2170, Total loss: 0.069, Loss x: 0.077, Loss s: 0.110, Loss w_fp: 0.009, Mask: 0.793 [2022-11-25 21:41:44,043][ INFO] Evaluation original >>>> meanIOU: 73.38
[2022-11-25 21:41:44,735][ INFO] ===========> Epoch: 16, LR: 0.0004, Previous best: 73.38 [2022-11-25 21:41:45,856][ INFO] Iters: 0, Total loss: 0.032, Loss x: 0.036, Loss s: 0.054, Loss w_fp: 0.004, Mask: 0.877 [2022-11-25 21:44:17,663][ INFO] Iters: 310, Total loss: 0.070, Loss x: 0.080, Loss s: 0.112, Loss w_fp: 0.009, Mask: 0.796 [2022-11-25 21:46:49,893][ INFO] Iters: 620, Total loss: 0.067, Loss x: 0.077, Loss s: 0.105, Loss w_fp: 0.011, Mask: 0.798 [2022-11-25 21:49:21,569][ INFO] Iters: 930, Total loss: 0.067, Loss x: 0.076, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.799 [2022-11-25 21:51:53,145][ INFO] Iters: 1240, Total loss: 0.067, Loss x: 0.076, Loss s: 0.105, Loss w_fp: 0.010, Mask: 0.798 [2022-11-25 21:54:24,692][ INFO] Iters: 1550, Total loss: 0.067, Loss x: 0.076, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.801 [2022-11-25 21:56:56,705][ INFO] Iters: 1860, Total loss: 0.066, Loss x: 0.075, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.801 [2022-11-25 21:59:28,836][ INFO] Iters: 2170, Total loss: 0.066, Loss x: 0.075, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.799 [2022-11-25 22:03:05,959][ INFO] Evaluation original >>>> meanIOU: 73.11
[2022-11-25 22:03:05,959][ INFO] ===========> Epoch: 17, LR: 0.0004, Previous best: 73.38 [2022-11-25 22:03:07,126][ INFO] Iters: 0, Total loss: 0.060, Loss x: 0.083, Loss s: 0.064, Loss w_fp: 0.012, Mask: 0.715 [2022-11-25 22:05:38,886][ INFO] Iters: 310, Total loss: 0.064, Loss x: 0.075, Loss s: 0.097, Loss w_fp: 0.010, Mask: 0.810 [2022-11-25 22:08:10,586][ INFO] Iters: 620, Total loss: 0.065, Loss x: 0.074, Loss s: 0.103, Loss w_fp: 0.010, Mask: 0.807 [2022-11-25 22:10:42,156][ INFO] Iters: 930, Total loss: 0.067, Loss x: 0.075, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.805 [2022-11-25 22:13:13,982][ INFO] Iters: 1240, Total loss: 0.066, Loss x: 0.074, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.805 [2022-11-25 22:15:46,311][ INFO] Iters: 1550, Total loss: 0.066, Loss x: 0.073, Loss s: 0.107, Loss w_fp: 0.010, Mask: 0.807 [2022-11-25 22:18:18,647][ INFO] Iters: 1860, Total loss: 0.066, Loss x: 0.073, Loss s: 0.107, Loss w_fp: 0.010, Mask: 0.807 [2022-11-25 22:20:50,422][ INFO] Iters: 2170, Total loss: 0.066, Loss x: 0.073, Loss s: 0.107, Loss w_fp: 0.010, Mask: 0.805 [2022-11-25 22:24:26,194][ INFO] Evaluation original >>>> meanIOU: 72.51
[2022-11-25 22:24:26,195][ INFO] ===========> Epoch: 18, LR: 0.0004, Previous best: 73.38 [2022-11-25 22:24:27,416][ INFO] Iters: 0, Total loss: 0.075, Loss x: 0.096, Loss s: 0.101, Loss w_fp: 0.009, Mask: 0.850 [2022-11-25 22:26:59,062][ INFO] Iters: 310, Total loss: 0.063, Loss x: 0.069, Loss s: 0.104, Loss w_fp: 0.010, Mask: 0.802 [2022-11-25 22:29:31,213][ INFO] Iters: 620, Total loss: 0.063, Loss x: 0.070, Loss s: 0.101, Loss w_fp: 0.010, Mask: 0.805 [2022-11-25 22:32:03,120][ INFO] Iters: 930, Total loss: 0.065, Loss x: 0.072, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.800 [2022-11-25 22:34:34,807][ INFO] Iters: 1240, Total loss: 0.065, Loss x: 0.073, Loss s: 0.106, Loss w_fp: 0.010, Mask: 0.802 [2022-11-25 22:37:06,460][ INFO] Iters: 1550, Total loss: 0.066, Loss x: 0.073, Loss s: 0.107, Loss w_fp: 0.010, Mask: 0.803 [2022-11-25 22:39:38,286][ INFO] Iters: 1860, Total loss: 0.066, Loss x: 0.075, Loss s: 0.107, Loss w_fp: 0.010, Mask: 0.802 [2022-11-25 22:42:10,421][ INFO] Iters: 2170, Total loss: 0.067, Loss x: 0.074, Loss s: 0.108, Loss w_fp: 0.010, Mask: 0.802 [2022-11-25 22:45:47,389][ INFO] Evaluation original >>>> meanIOU: 72.03
[2022-11-25 22:45:47,390][ INFO] ===========> Epoch: 19, LR: 0.0004, Previous best: 73.38 [2022-11-25 22:45:48,542][ INFO] Iters: 0, Total loss: 0.044, Loss x: 0.023, Loss s: 0.126, Loss w_fp: 0.006, Mask: 0.831 [2022-11-25 22:48:20,031][ INFO] Iters: 310, Total loss: 0.061, Loss x: 0.067, Loss s: 0.103, Loss w_fp: 0.009, Mask: 0.807 [2022-11-25 22:50:51,460][ INFO] Iters: 620, Total loss: 0.062, Loss x: 0.067, Loss s: 0.105, Loss w_fp: 0.009, Mask: 0.813 [2022-11-25 22:53:23,441][ INFO] Iters: 930, Total loss: 0.063, Loss x: 0.068, Loss s: 0.104, Loss w_fp: 0.009, Mask: 0.810 [2022-11-25 22:55:55,332][ INFO] Iters: 1240, Total loss: 0.063, Loss x: 0.068, Loss s: 0.105, Loss w_fp: 0.009, Mask: 0.810 [2022-11-25 22:58:27,054][ INFO] Iters: 1550, Total loss: 0.063, Loss x: 0.068, Loss s: 0.104, Loss w_fp: 0.009, Mask: 0.810 [2022-11-25 23:00:59,185][ INFO] Iters: 1860, Total loss: 0.063, Loss x: 0.069, Loss s: 0.104, Loss w_fp: 0.009, Mask: 0.810 [2022-11-25 23:03:30,841][ INFO] Iters: 2170, Total loss: 0.063, Loss x: 0.069, Loss s: 0.104, Loss w_fp: 0.009, Mask: 0.811 [2022-11-25 23:07:07,834][ INFO] Evaluation original >>>> meanIOU: 73.40
[2022-11-25 23:07:08,760][ INFO] ===========> Epoch: 20, LR: 0.0004, Previous best: 73.40 [2022-11-25 23:07:10,052][ INFO] Iters: 0, Total loss: 0.109, Loss x: 0.097, Loss s: 0.241, Loss w_fp: 0.002, Mask: 0.909 [2022-11-25 23:09:41,545][ INFO] Iters: 310, Total loss: 0.064, Loss x: 0.072, Loss s: 0.102, Loss w_fp: 0.010, Mask: 0.804 [2022-11-25 23:12:13,575][ INFO] Iters: 620, Total loss: 0.063, Loss x: 0.071, Loss s: 0.101, Loss w_fp: 0.009, Mask: 0.803 [2022-11-25 23:14:45,947][ INFO] Iters: 930, Total loss: 0.062, Loss x: 0.070, Loss s: 0.101, Loss w_fp: 0.009, Mask: 0.807 [2022-11-25 23:17:18,124][ INFO] Iters: 1240, Total loss: 0.062, Loss x: 0.070, Loss s: 0.099, Loss w_fp: 0.009, Mask: 0.808 [2022-11-25 23:19:50,623][ INFO] Iters: 1550, Total loss: 0.062, Loss x: 0.071, Loss s: 0.099, Loss w_fp: 0.009, Mask: 0.811 [2022-11-25 23:22:23,298][ INFO] Iters: 1860, Total loss: 0.063, Loss x: 0.071, Loss s: 0.099, Loss w_fp: 0.009, Mask: 0.812 [2022-11-25 23:24:55,918][ INFO] Iters: 2170, Total loss: 0.063, Loss x: 0.071, Loss s: 0.101, Loss w_fp: 0.009, Mask: 0.811 [2022-11-25 23:28:33,052][ INFO] Evaluation original >>>> meanIOU: 72.97
[2022-11-25 23:28:33,053][ INFO] ===========> Epoch: 21, LR: 0.0004, Previous best: 73.40 [2022-11-25 23:28:34,409][ INFO] Iters: 0, Total loss: 0.164, Loss x: 0.097, Loss s: 0.416, Loss w_fp: 0.048, Mask: 0.562 [2022-11-25 23:31:06,463][ INFO] Iters: 310, Total loss: 0.065, Loss x: 0.072, Loss s: 0.106, Loss w_fp: 0.008, Mask: 0.819 [2022-11-25 23:33:38,695][ INFO] Iters: 620, Total loss: 0.065, Loss x: 0.071, Loss s: 0.108, Loss w_fp: 0.009, Mask: 0.820 [2022-11-25 23:36:10,812][ INFO] Iters: 930, Total loss: 0.063, Loss x: 0.070, Loss s: 0.101, Loss w_fp: 0.009, Mask: 0.819 [2022-11-25 23:38:43,080][ INFO] Iters: 1240, Total loss: 0.063, Loss x: 0.070, Loss s: 0.103, Loss w_fp: 0.009, Mask: 0.817 [2022-11-25 23:41:14,832][ INFO] Iters: 1550, Total loss: 0.063, Loss x: 0.069, Loss s: 0.104, Loss w_fp: 0.009, Mask: 0.816 [2022-11-25 23:43:46,867][ INFO] Iters: 1860, Total loss: 0.062, Loss x: 0.069, Loss s: 0.104, Loss w_fp: 0.009, Mask: 0.817 [2022-11-25 23:46:18,692][ INFO] Iters: 2170, Total loss: 0.062, Loss x: 0.068, Loss s: 0.102, Loss w_fp: 0.009, Mask: 0.817 [2022-11-25 23:49:56,159][ INFO] Evaluation original >>>> meanIOU: 73.91
[2022-11-25 23:49:56,920][ INFO] ===========> Epoch: 22, LR: 0.0004, Previous best: 73.91 [2022-11-25 23:49:58,238][ INFO] Iters: 0, Total loss: 0.044, Loss x: 0.050, Loss s: 0.072, Loss w_fp: 0.005, Mask: 0.837 [2022-11-25 23:52:30,334][ INFO] Iters: 310, Total loss: 0.062, Loss x: 0.065, Loss s: 0.107, Loss w_fp: 0.010, Mask: 0.814 [2022-11-25 23:55:02,457][ INFO] Iters: 620, Total loss: 0.060, Loss x: 0.064, Loss s: 0.103, Loss w_fp: 0.009, Mask: 0.817 [2022-11-25 23:57:34,409][ INFO] Iters: 930, Total loss: 0.061, Loss x: 0.065, Loss s: 0.105, Loss w_fp: 0.009, Mask: 0.819 [2022-11-26 00:00:06,086][ INFO] Iters: 1240, Total loss: 0.061, Loss x: 0.065, Loss s: 0.105, Loss w_fp: 0.009, Mask: 0.817 [2022-11-26 00:02:37,744][ INFO] Iters: 1550, Total loss: 0.062, Loss x: 0.066, Loss s: 0.105, Loss w_fp: 0.009, Mask: 0.818 [2022-11-26 00:05:09,704][ INFO] Iters: 1860, Total loss: 0.061, Loss x: 0.066, Loss s: 0.104, Loss w_fp: 0.009, Mask: 0.817 [2022-11-26 00:07:42,003][ INFO] Iters: 2170, Total loss: 0.061, Loss x: 0.066, Loss s: 0.103, Loss w_fp: 0.009, Mask: 0.816 [2022-11-26 00:11:18,139][ INFO] Evaluation original >>>> meanIOU: 73.62
[2022-11-26 00:11:18,139][ INFO] ===========> Epoch: 23, LR: 0.0004, Previous best: 73.91 [2022-11-26 00:11:19,442][ INFO] Iters: 0, Total loss: 0.109, Loss x: 0.082, Loss s: 0.261, Loss w_fp: 0.013, Mask: 0.752 [2022-11-26 00:13:51,170][ INFO] Iters: 310, Total loss: 0.058, Loss x: 0.066, Loss s: 0.091, Loss w_fp: 0.008, Mask: 0.813 [2022-11-26 00:16:23,112][ INFO] Iters: 620, Total loss: 0.057, Loss x: 0.064, Loss s: 0.093, Loss w_fp: 0.008, Mask: 0.820 [2022-11-26 00:18:55,130][ INFO] Iters: 930, Total loss: 0.058, Loss x: 0.063, Loss s: 0.095, Loss w_fp: 0.009, Mask: 0.818 [2022-11-26 00:21:26,712][ INFO] Iters: 1240, Total loss: 0.058, Loss x: 0.064, Loss s: 0.095, Loss w_fp: 0.008, Mask: 0.820 [2022-11-26 00:23:58,878][ INFO] Iters: 1550, Total loss: 0.058, Loss x: 0.065, Loss s: 0.096, Loss w_fp: 0.009, Mask: 0.820 [2022-11-26 00:26:26,518][ INFO] Iters: 1860, Total loss: 0.059, Loss x: 0.065, Loss s: 0.097, Loss w_fp: 0.009, Mask: 0.821 [2022-11-26 00:28:53,696][ INFO] Iters: 2170, Total loss: 0.059, Loss x: 0.065, Loss s: 0.097, Loss w_fp: 0.009, Mask: 0.822 [2022-11-26 00:32:15,014][ INFO] Evaluation original >>>> meanIOU: 73.14
[2022-11-26 00:32:15,015][ INFO] ===========> Epoch: 24, LR: 0.0004, Previous best: 73.91 [2022-11-26 00:32:16,136][ INFO] Iters: 0, Total loss: 0.022, Loss x: 0.030, Loss s: 0.024, Loss w_fp: 0.003, Mask: 0.900 [2022-11-26 00:34:43,617][ INFO] Iters: 310, Total loss: 0.056, Loss x: 0.064, Loss s: 0.087, Loss w_fp: 0.008, Mask: 0.829 [2022-11-26 00:37:15,260][ INFO] Iters: 620, Total loss: 0.056, Loss x: 0.063, Loss s: 0.089, Loss w_fp: 0.008, Mask: 0.828 [2022-11-26 00:39:46,748][ INFO] Iters: 930, Total loss: 0.057, Loss x: 0.063, Loss s: 0.094, Loss w_fp: 0.008, Mask: 0.826 [2022-11-26 00:42:18,556][ INFO] Iters: 1240, Total loss: 0.057, Loss x: 0.063, Loss s: 0.095, Loss w_fp: 0.008, Mask: 0.825 [2022-11-26 00:44:50,817][ INFO] Iters: 1550, Total loss: 0.058, Loss x: 0.063, Loss s: 0.098, Loss w_fp: 0.008, Mask: 0.825 [2022-11-26 00:47:22,182][ INFO] Iters: 1860, Total loss: 0.058, Loss x: 0.063, Loss s: 0.097, Loss w_fp: 0.008, Mask: 0.825 [2022-11-26 00:49:53,805][ INFO] Iters: 2170, Total loss: 0.058, Loss x: 0.063, Loss s: 0.097, Loss w_fp: 0.008, Mask: 0.824 [2022-11-26 00:53:30,153][ INFO] Evaluation original >>>> meanIOU: 72.66
[2022-11-26 00:53:30,153][ INFO] ===========> Epoch: 25, LR: 0.0004, Previous best: 73.91 [2022-11-26 00:53:31,353][ INFO] Iters: 0, Total loss: 0.062, Loss x: 0.113, Loss s: 0.018, Loss w_fp: 0.006, Mask: 0.870 [2022-11-26 00:56:02,955][ INFO] Iters: 310, Total loss: 0.059, Loss x: 0.063, Loss s: 0.102, Loss w_fp: 0.009, Mask: 0.825 [2022-11-26 00:58:34,438][ INFO] Iters: 620, Total loss: 0.060, Loss x: 0.063, Loss s: 0.104, Loss w_fp: 0.009, Mask: 0.820 [2022-11-26 01:01:06,570][ INFO] Iters: 930, Total loss: 0.059, Loss x: 0.064, Loss s: 0.101, Loss w_fp: 0.009, Mask: 0.822 [2022-11-26 01:03:37,871][ INFO] Iters: 1240, Total loss: 0.059, Loss x: 0.064, Loss s: 0.099, Loss w_fp: 0.009, Mask: 0.823 [2022-11-26 01:06:10,063][ INFO] Iters: 1550, Total loss: 0.058, Loss x: 0.063, Loss s: 0.098, Loss w_fp: 0.008, Mask: 0.824 [2022-11-26 01:08:41,765][ INFO] Iters: 1860, Total loss: 0.058, Loss x: 0.064, Loss s: 0.098, Loss w_fp: 0.009, Mask: 0.824 [2022-11-26 01:11:13,881][ INFO] Iters: 2170, Total loss: 0.059, Loss x: 0.064, Loss s: 0.098, Loss w_fp: 0.009, Mask: 0.824 [2022-11-26 01:14:49,221][ INFO] Evaluation original >>>> meanIOU: 74.33
[2022-11-26 01:14:49,940][ INFO] ===========> Epoch: 26, LR: 0.0004, Previous best: 74.33 [2022-11-26 01:14:51,106][ INFO] Iters: 0, Total loss: 0.052, Loss x: 0.058, Loss s: 0.075, Loss w_fp: 0.018, Mask: 0.844 [2022-11-26 01:17:22,892][ INFO] Iters: 310, Total loss: 0.056, Loss x: 0.062, Loss s: 0.091, Loss w_fp: 0.008, Mask: 0.832 [2022-11-26 01:19:55,890][ INFO] Iters: 620, Total loss: 0.055, Loss x: 0.061, Loss s: 0.091, Loss w_fp: 0.009, Mask: 0.832 [2022-11-26 01:22:27,307][ INFO] Iters: 930, Total loss: 0.057, Loss x: 0.061, Loss s: 0.097, Loss w_fp: 0.009, Mask: 0.833 [2022-11-26 01:24:59,476][ INFO] Iters: 1240, Total loss: 0.057, Loss x: 0.061, Loss s: 0.097, Loss w_fp: 0.009, Mask: 0.832 [2022-11-26 01:27:31,186][ INFO] Iters: 1550, Total loss: 0.057, Loss x: 0.061, Loss s: 0.097, Loss w_fp: 0.008, Mask: 0.830 [2022-11-26 01:30:03,458][ INFO] Iters: 1860, Total loss: 0.057, Loss x: 0.061, Loss s: 0.097, Loss w_fp: 0.008, Mask: 0.830 [2022-11-26 01:32:35,568][ INFO] Iters: 2170, Total loss: 0.057, Loss x: 0.061, Loss s: 0.097, Loss w_fp: 0.009, Mask: 0.831 [2022-11-26 01:36:12,444][ INFO] Evaluation original >>>> meanIOU: 73.00
[2022-11-26 01:36:12,445][ INFO] ===========> Epoch: 27, LR: 0.0003, Previous best: 74.33 [2022-11-26 01:36:13,783][ INFO] Iters: 0, Total loss: 0.070, Loss x: 0.092, Loss s: 0.091, Loss w_fp: 0.006, Mask: 0.827 [2022-11-26 01:38:45,911][ INFO] Iters: 310, Total loss: 0.064, Loss x: 0.065, Loss s: 0.115, Loss w_fp: 0.010, Mask: 0.821 [2022-11-26 01:41:17,162][ INFO] Iters: 620, Total loss: 0.062, Loss x: 0.065, Loss s: 0.108, Loss w_fp: 0.009, Mask: 0.823 [2022-11-26 01:43:49,374][ INFO] Iters: 930, Total loss: 0.061, Loss x: 0.064, Loss s: 0.106, Loss w_fp: 0.009, Mask: 0.823 [2022-11-26 01:46:21,581][ INFO] Iters: 1240, Total loss: 0.060, Loss x: 0.063, Loss s: 0.103, Loss w_fp: 0.009, Mask: 0.824 [2022-11-26 01:48:52,891][ INFO] Iters: 1550, Total loss: 0.059, Loss x: 0.063, Loss s: 0.102, Loss w_fp: 0.009, Mask: 0.825 [2022-11-26 01:51:24,832][ INFO] Iters: 1860, Total loss: 0.059, Loss x: 0.063, Loss s: 0.101, Loss w_fp: 0.009, Mask: 0.826 [2022-11-26 01:53:56,355][ INFO] Iters: 2170, Total loss: 0.059, Loss x: 0.063, Loss s: 0.101, Loss w_fp: 0.009, Mask: 0.827 [2022-11-26 01:57:24,997][ INFO] Evaluation original >>>> meanIOU: 75.16
[2022-11-26 01:57:25,717][ INFO] ===========> Epoch: 28, LR: 0.0003, Previous best: 75.16 [2022-11-26 01:57:26,886][ INFO] Iters: 0, Total loss: 0.075, Loss x: 0.039, Loss s: 0.217, Loss w_fp: 0.003, Mask: 0.723 [2022-11-26 01:59:54,536][ INFO] Iters: 310, Total loss: 0.056, Loss x: 0.060, Loss s: 0.095, Loss w_fp: 0.008, Mask: 0.833 [2022-11-26 02:02:22,276][ INFO] Iters: 620, Total loss: 0.058, Loss x: 0.061, Loss s: 0.100, Loss w_fp: 0.008, Mask: 0.834 [2022-11-26 02:04:53,495][ INFO] Iters: 930, Total loss: 0.058, Loss x: 0.061, Loss s: 0.102, Loss w_fp: 0.008, Mask: 0.832 [2022-11-26 02:07:25,745][ INFO] Iters: 1240, Total loss: 0.057, Loss x: 0.061, Loss s: 0.100, Loss w_fp: 0.008, Mask: 0.831 [2022-11-26 02:09:58,255][ INFO] Iters: 1550, Total loss: 0.057, Loss x: 0.061, Loss s: 0.099, Loss w_fp: 0.008, Mask: 0.831 [2022-11-26 02:12:29,832][ INFO] Iters: 1860, Total loss: 0.057, Loss x: 0.061, Loss s: 0.097, Loss w_fp: 0.008, Mask: 0.833 [2022-11-26 02:15:01,580][ INFO] Iters: 2170, Total loss: 0.057, Loss x: 0.061, Loss s: 0.097, Loss w_fp: 0.008, Mask: 0.832 [2022-11-26 02:18:38,219][ INFO] Evaluation original >>>> meanIOU: 74.21
[2022-11-26 02:18:38,219][ INFO] ===========> Epoch: 29, LR: 0.0003, Previous best: 75.16 [2022-11-26 02:18:39,527][ INFO] Iters: 0, Total loss: 0.039, Loss x: 0.040, Loss s: 0.070, Loss w_fp: 0.008, Mask: 0.750 [2022-11-26 02:21:11,341][ INFO] Iters: 310, Total loss: 0.055, Loss x: 0.061, Loss s: 0.091, Loss w_fp: 0.009, Mask: 0.833 [2022-11-26 02:23:42,798][ INFO] Iters: 620, Total loss: 0.056, Loss x: 0.060, Loss s: 0.094, Loss w_fp: 0.008, Mask: 0.832 [2022-11-26 02:26:14,431][ INFO] Iters: 930, Total loss: 0.055, Loss x: 0.059, Loss s: 0.093, Loss w_fp: 0.008, Mask: 0.833 [2022-11-26 02:28:46,564][ INFO] Iters: 1240, Total loss: 0.055, Loss x: 0.059, Loss s: 0.092, Loss w_fp: 0.008, Mask: 0.836 [2022-11-26 02:31:18,480][ INFO] Iters: 1550, Total loss: 0.055, Loss x: 0.059, Loss s: 0.094, Loss w_fp: 0.008, Mask: 0.833 [2022-11-26 02:33:50,321][ INFO] Iters: 1860, Total loss: 0.054, Loss x: 0.058, Loss s: 0.093, Loss w_fp: 0.008, Mask: 0.835 [2022-11-26 02:36:22,296][ INFO] Iters: 2170, Total loss: 0.055, Loss x: 0.059, Loss s: 0.093, Loss w_fp: 0.008, Mask: 0.834 [2022-11-26 02:39:58,409][ INFO] Evaluation original >>>> meanIOU: 75.50
[2022-11-26 02:39:59,175][ INFO] ===========> Epoch: 30, LR: 0.0003, Previous best: 75.50 [2022-11-26 02:40:00,395][ INFO] Iters: 0, Total loss: 0.050, Loss x: 0.060, Loss s: 0.073, Loss w_fp: 0.007, Mask: 0.738 [2022-11-26 02:42:32,158][ INFO] Iters: 310, Total loss: 0.056, Loss x: 0.059, Loss s: 0.097, Loss w_fp: 0.007, Mask: 0.836 [2022-11-26 02:45:04,883][ INFO] Iters: 620, Total loss: 0.055, Loss x: 0.058, Loss s: 0.095, Loss w_fp: 0.008, Mask: 0.838 [2022-11-26 02:47:37,097][ INFO] Iters: 930, Total loss: 0.054, Loss x: 0.058, Loss s: 0.094, Loss w_fp: 0.007, Mask: 0.838 [2022-11-26 02:50:08,985][ INFO] Iters: 1240, Total loss: 0.056, Loss x: 0.061, Loss s: 0.094, Loss w_fp: 0.007, Mask: 0.834 [2022-11-26 02:52:40,988][ INFO] Iters: 1550, Total loss: 0.057, Loss x: 0.063, Loss s: 0.096, Loss w_fp: 0.008, Mask: 0.831 [2022-11-26 02:55:12,729][ INFO] Iters: 1860, Total loss: 0.058, Loss x: 0.064, Loss s: 0.095, Loss w_fp: 0.008, Mask: 0.828 [2022-11-26 02:57:44,575][ INFO] Iters: 2170, Total loss: 0.057, Loss x: 0.063, Loss s: 0.095, Loss w_fp: 0.008, Mask: 0.829 [2022-11-26 03:01:19,901][ INFO] Evaluation original >>>> meanIOU: 73.61
[2022-11-26 03:01:19,901][ INFO] ===========> Epoch: 31, LR: 0.0003, Previous best: 75.50 [2022-11-26 03:01:21,159][ INFO] Iters: 0, Total loss: 0.050, Loss x: 0.049, Loss s: 0.099, Loss w_fp: 0.005, Mask: 0.923 [2022-11-26 03:03:52,176][ INFO] Iters: 310, Total loss: 0.056, Loss x: 0.059, Loss s: 0.097, Loss w_fp: 0.008, Mask: 0.829 [2022-11-26 03:06:23,637][ INFO] Iters: 620, Total loss: 0.056, Loss x: 0.061, Loss s: 0.095, Loss w_fp: 0.008, Mask: 0.830 [2022-11-26 03:08:55,391][ INFO] Iters: 930, Total loss: 0.056, Loss x: 0.061, Loss s: 0.094, Loss w_fp: 0.008, Mask: 0.831 [2022-11-26 03:11:26,776][ INFO] Iters: 1240, Total loss: 0.056, Loss x: 0.061, Loss s: 0.094, Loss w_fp: 0.008, Mask: 0.833 [2022-11-26 03:13:58,162][ INFO] Iters: 1550, Total loss: 0.057, Loss x: 0.061, Loss s: 0.096, Loss w_fp: 0.008, Mask: 0.832 [2022-11-26 03:16:29,520][ INFO] Iters: 1860, Total loss: 0.057, Loss x: 0.061, Loss s: 0.096, Loss w_fp: 0.008, Mask: 0.833 [2022-11-26 03:19:01,022][ INFO] Iters: 2170, Total loss: 0.056, Loss x: 0.061, Loss s: 0.094, Loss w_fp: 0.008, Mask: 0.834 [2022-11-26 03:22:35,723][ INFO] Evaluation original >>>> meanIOU: 74.38
[2022-11-26 03:22:35,723][ INFO] ===========> Epoch: 32, LR: 0.0003, Previous best: 75.50 [2022-11-26 03:22:36,886][ INFO] Iters: 0, Total loss: 0.066, Loss x: 0.079, Loss s: 0.097, Loss w_fp: 0.009, Mask: 0.688 [2022-11-26 03:25:04,079][ INFO] Iters: 310, Total loss: 0.053, Loss x: 0.058, Loss s: 0.088, Loss w_fp: 0.008, Mask: 0.832 [2022-11-26 03:27:31,214][ INFO] Iters: 620, Total loss: 0.053, Loss x: 0.057, Loss s: 0.090, Loss w_fp: 0.008, Mask: 0.833 [2022-11-26 03:29:58,622][ INFO] Iters: 930, Total loss: 0.053, Loss x: 0.058, Loss s: 0.090, Loss w_fp: 0.008, Mask: 0.834 [2022-11-26 03:32:30,543][ INFO] Iters: 1240, Total loss: 0.054, Loss x: 0.057, Loss s: 0.093, Loss w_fp: 0.008, Mask: 0.836 [2022-11-26 03:35:02,917][ INFO] Iters: 1550, Total loss: 0.054, Loss x: 0.057, Loss s: 0.093, Loss w_fp: 0.008, Mask: 0.838 [2022-11-26 03:37:35,553][ INFO] Iters: 1860, Total loss: 0.054, Loss x: 0.057, Loss s: 0.092, Loss w_fp: 0.008, Mask: 0.839 [2022-11-26 03:40:07,923][ INFO] Iters: 2170, Total loss: 0.053, Loss x: 0.057, Loss s: 0.092, Loss w_fp: 0.008, Mask: 0.839 [2022-11-26 03:43:45,001][ INFO] Evaluation original >>>> meanIOU: 73.81
[2022-11-26 03:43:45,001][ INFO] ===========> Epoch: 33, LR: 0.0003, Previous best: 75.50 [2022-11-26 03:43:46,280][ INFO] Iters: 0, Total loss: 0.046, Loss x: 0.062, Loss s: 0.056, Loss w_fp: 0.004, Mask: 0.851 [2022-11-26 03:46:18,370][ INFO] Iters: 310, Total loss: 0.049, Loss x: 0.053, Loss s: 0.084, Loss w_fp: 0.008, Mask: 0.847 [2022-11-26 03:48:50,543][ INFO] Iters: 620, Total loss: 0.050, Loss x: 0.055, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.848 [2022-11-26 03:51:22,944][ INFO] Iters: 930, Total loss: 0.051, Loss x: 0.055, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.845 [2022-11-26 03:53:55,383][ INFO] Iters: 1240, Total loss: 0.051, Loss x: 0.055, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.844 [2022-11-26 03:56:27,481][ INFO] Iters: 1550, Total loss: 0.052, Loss x: 0.055, Loss s: 0.089, Loss w_fp: 0.008, Mask: 0.843 [2022-11-26 03:58:59,236][ INFO] Iters: 1860, Total loss: 0.052, Loss x: 0.055, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.844 [2022-11-26 04:01:31,274][ INFO] Iters: 2170, Total loss: 0.052, Loss x: 0.056, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.844 [2022-11-26 04:05:08,973][ INFO] Evaluation original >>>> meanIOU: 73.42
[2022-11-26 04:05:08,974][ INFO] ===========> Epoch: 34, LR: 0.0003, Previous best: 75.50 [2022-11-26 04:05:10,274][ INFO] Iters: 0, Total loss: 0.017, Loss x: 0.023, Loss s: 0.019, Loss w_fp: 0.005, Mask: 0.923 [2022-11-26 04:07:42,168][ INFO] Iters: 310, Total loss: 0.055, Loss x: 0.059, Loss s: 0.092, Loss w_fp: 0.009, Mask: 0.834 [2022-11-26 04:10:14,693][ INFO] Iters: 620, Total loss: 0.055, Loss x: 0.060, Loss s: 0.092, Loss w_fp: 0.008, Mask: 0.833 [2022-11-26 04:12:46,611][ INFO] Iters: 930, Total loss: 0.054, Loss x: 0.059, Loss s: 0.089, Loss w_fp: 0.008, Mask: 0.837 [2022-11-26 04:15:18,449][ INFO] Iters: 1240, Total loss: 0.054, Loss x: 0.058, Loss s: 0.091, Loss w_fp: 0.007, Mask: 0.837 [2022-11-26 04:17:50,212][ INFO] Iters: 1550, Total loss: 0.053, Loss x: 0.058, Loss s: 0.091, Loss w_fp: 0.007, Mask: 0.838 [2022-11-26 04:20:22,630][ INFO] Iters: 1860, Total loss: 0.054, Loss x: 0.057, Loss s: 0.092, Loss w_fp: 0.007, Mask: 0.838 [2022-11-26 04:22:54,465][ INFO] Iters: 2170, Total loss: 0.054, Loss x: 0.057, Loss s: 0.093, Loss w_fp: 0.008, Mask: 0.837 [2022-11-26 04:26:31,838][ INFO] Evaluation original >>>> meanIOU: 73.96
[2022-11-26 04:26:31,838][ INFO] ===========> Epoch: 35, LR: 0.0003, Previous best: 75.50 [2022-11-26 04:26:33,074][ INFO] Iters: 0, Total loss: 0.068, Loss x: 0.064, Loss s: 0.129, Loss w_fp: 0.016, Mask: 0.818 [2022-11-26 04:29:05,422][ INFO] Iters: 310, Total loss: 0.052, Loss x: 0.056, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.841 [2022-11-26 04:31:37,662][ INFO] Iters: 620, Total loss: 0.053, Loss x: 0.058, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.839 [2022-11-26 04:34:10,203][ INFO] Iters: 930, Total loss: 0.053, Loss x: 0.057, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.840 [2022-11-26 04:36:42,221][ INFO] Iters: 1240, Total loss: 0.052, Loss x: 0.056, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.841 [2022-11-26 04:39:14,643][ INFO] Iters: 1550, Total loss: 0.052, Loss x: 0.056, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.842 [2022-11-26 04:41:46,537][ INFO] Iters: 1860, Total loss: 0.052, Loss x: 0.056, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.843 [2022-11-26 04:44:19,157][ INFO] Iters: 2170, Total loss: 0.051, Loss x: 0.055, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.843 [2022-11-26 04:47:55,833][ INFO] Evaluation original >>>> meanIOU: 74.02
[2022-11-26 04:47:55,834][ INFO] ===========> Epoch: 36, LR: 0.0003, Previous best: 75.50 [2022-11-26 04:47:56,947][ INFO] Iters: 0, Total loss: 0.043, Loss x: 0.053, Loss s: 0.064, Loss w_fp: 0.004, Mask: 0.848 [2022-11-26 04:50:29,061][ INFO] Iters: 310, Total loss: 0.052, Loss x: 0.056, Loss s: 0.087, Loss w_fp: 0.008, Mask: 0.841 [2022-11-26 04:52:56,854][ INFO] Iters: 620, Total loss: 0.052, Loss x: 0.054, Loss s: 0.090, Loss w_fp: 0.008, Mask: 0.841 [2022-11-26 04:55:24,589][ INFO] Iters: 930, Total loss: 0.052, Loss x: 0.055, Loss s: 0.089, Loss w_fp: 0.008, Mask: 0.841 [2022-11-26 04:57:52,093][ INFO] Iters: 1240, Total loss: 0.052, Loss x: 0.054, Loss s: 0.090, Loss w_fp: 0.007, Mask: 0.842 [2022-11-26 05:00:19,320][ INFO] Iters: 1550, Total loss: 0.051, Loss x: 0.054, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.843 [2022-11-26 05:02:46,526][ INFO] Iters: 1860, Total loss: 0.051, Loss x: 0.054, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.843 [2022-11-26 05:05:13,866][ INFO] Iters: 2170, Total loss: 0.051, Loss x: 0.055, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.844 [2022-11-26 05:08:39,956][ INFO] Evaluation original >>>> meanIOU: 74.34
[2022-11-26 05:08:39,956][ INFO] ===========> Epoch: 37, LR: 0.0003, Previous best: 75.50 [2022-11-26 05:08:41,038][ INFO] Iters: 0, Total loss: 0.055, Loss x: 0.042, Loss s: 0.135, Loss w_fp: 0.002, Mask: 0.713 [2022-11-26 05:11:08,250][ INFO] Iters: 310, Total loss: 0.050, Loss x: 0.054, Loss s: 0.081, Loss w_fp: 0.008, Mask: 0.837 [2022-11-26 05:13:35,415][ INFO] Iters: 620, Total loss: 0.051, Loss x: 0.053, Loss s: 0.088, Loss w_fp: 0.008, Mask: 0.841 [2022-11-26 05:16:02,777][ INFO] Iters: 930, Total loss: 0.051, Loss x: 0.053, Loss s: 0.091, Loss w_fp: 0.008, Mask: 0.845 [2022-11-26 05:18:29,924][ INFO] Iters: 1240, Total loss: 0.051, Loss x: 0.053, Loss s: 0.091, Loss w_fp: 0.008, Mask: 0.847 [2022-11-26 05:20:57,195][ INFO] Iters: 1550, Total loss: 0.051, Loss x: 0.053, Loss s: 0.091, Loss w_fp: 0.008, Mask: 0.846 [2022-11-26 05:23:24,363][ INFO] Iters: 1860, Total loss: 0.052, Loss x: 0.054, Loss s: 0.091, Loss w_fp: 0.008, Mask: 0.844 [2022-11-26 05:25:51,538][ INFO] Iters: 2170, Total loss: 0.052, Loss x: 0.055, Loss s: 0.090, Loss w_fp: 0.008, Mask: 0.844 [2022-11-26 05:29:15,612][ INFO] Evaluation original >>>> meanIOU: 74.90
[2022-11-26 05:29:15,613][ INFO] ===========> Epoch: 38, LR: 0.0003, Previous best: 75.50 [2022-11-26 05:29:16,730][ INFO] Iters: 0, Total loss: 0.072, Loss x: 0.073, Loss s: 0.138, Loss w_fp: 0.003, Mask: 0.870 [2022-11-26 05:31:43,928][ INFO] Iters: 310, Total loss: 0.050, Loss x: 0.052, Loss s: 0.090, Loss w_fp: 0.007, Mask: 0.841 [2022-11-26 05:34:11,015][ INFO] Iters: 620, Total loss: 0.051, Loss x: 0.054, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.841 [2022-11-26 05:36:38,046][ INFO] Iters: 930, Total loss: 0.051, Loss x: 0.054, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.842 [2022-11-26 05:39:05,319][ INFO] Iters: 1240, Total loss: 0.051, Loss x: 0.053, Loss s: 0.091, Loss w_fp: 0.008, Mask: 0.843 [2022-11-26 05:41:32,492][ INFO] Iters: 1550, Total loss: 0.051, Loss x: 0.053, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.844 [2022-11-26 05:43:59,655][ INFO] Iters: 1860, Total loss: 0.051, Loss x: 0.054, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.846 [2022-11-26 05:46:26,853][ INFO] Iters: 2170, Total loss: 0.051, Loss x: 0.053, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.848 [2022-11-26 05:49:50,750][ INFO] Evaluation original >>>> meanIOU: 74.73
[2022-11-26 05:49:50,750][ INFO] ===========> Epoch: 39, LR: 0.0003, Previous best: 75.50 [2022-11-26 05:49:51,794][ INFO] Iters: 0, Total loss: 0.037, Loss x: 0.023, Loss s: 0.093, Loss w_fp: 0.010, Mask: 0.905 [2022-11-26 05:52:19,005][ INFO] Iters: 310, Total loss: 0.048, Loss x: 0.052, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.846 [2022-11-26 05:54:46,391][ INFO] Iters: 620, Total loss: 0.051, Loss x: 0.053, Loss s: 0.089, Loss w_fp: 0.008, Mask: 0.844 [2022-11-26 05:57:13,646][ INFO] Iters: 930, Total loss: 0.051, Loss x: 0.053, Loss s: 0.091, Loss w_fp: 0.008, Mask: 0.844 [2022-11-26 05:59:41,046][ INFO] Iters: 1240, Total loss: 0.051, Loss x: 0.054, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.849 [2022-11-26 06:02:08,181][ INFO] Iters: 1550, Total loss: 0.051, Loss x: 0.053, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.850 [2022-11-26 06:04:35,452][ INFO] Iters: 1860, Total loss: 0.051, Loss x: 0.053, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.849 [2022-11-26 06:07:02,763][ INFO] Iters: 2170, Total loss: 0.051, Loss x: 0.054, Loss s: 0.089, Loss w_fp: 0.007, Mask: 0.849 [2022-11-26 06:10:26,666][ INFO] Evaluation original >>>> meanIOU: 74.32
[2022-11-26 06:10:26,666][ INFO] ===========> Epoch: 40, LR: 0.0003, Previous best: 75.50 [2022-11-26 06:10:27,756][ INFO] Iters: 0, Total loss: 0.117, Loss x: 0.091, Loss s: 0.276, Loss w_fp: 0.011, Mask: 0.765 [2022-11-26 06:12:54,928][ INFO] Iters: 310, Total loss: 0.050, Loss x: 0.052, Loss s: 0.087, Loss w_fp: 0.009, Mask: 0.846 [2022-11-26 06:15:22,432][ INFO] Iters: 620, Total loss: 0.050, Loss x: 0.052, Loss s: 0.086, Loss w_fp: 0.009, Mask: 0.846 [2022-11-26 06:17:49,693][ INFO] Iters: 930, Total loss: 0.049, Loss x: 0.051, Loss s: 0.087, Loss w_fp: 0.008, Mask: 0.847 [2022-11-26 06:20:17,024][ INFO] Iters: 1240, Total loss: 0.050, Loss x: 0.052, Loss s: 0.090, Loss w_fp: 0.008, Mask: 0.847 [2022-11-26 06:22:44,320][ INFO] Iters: 1550, Total loss: 0.050, Loss x: 0.052, Loss s: 0.088, Loss w_fp: 0.008, Mask: 0.849 [2022-11-26 06:25:11,534][ INFO] Iters: 1860, Total loss: 0.050, Loss x: 0.052, Loss s: 0.089, Loss w_fp: 0.008, Mask: 0.848 [2022-11-26 06:27:38,850][ INFO] Iters: 2170, Total loss: 0.050, Loss x: 0.052, Loss s: 0.089, Loss w_fp: 0.008, Mask: 0.849 [2022-11-26 06:31:02,729][ INFO] Evaluation original >>>> meanIOU: 74.43
[2022-11-26 06:31:02,729][ INFO] ===========> Epoch: 41, LR: 0.0003, Previous best: 75.50 [2022-11-26 06:31:03,893][ INFO] Iters: 0, Total loss: 0.033, Loss x: 0.041, Loss s: 0.050, Loss w_fp: 0.001, Mask: 0.920 [2022-11-26 06:33:31,166][ INFO] Iters: 310, Total loss: 0.053, Loss x: 0.055, Loss s: 0.093, Loss w_fp: 0.008, Mask: 0.849 [2022-11-26 06:35:58,148][ INFO] Iters: 620, Total loss: 0.051, Loss x: 0.053, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.846 [2022-11-26 06:38:24,089][ INFO] Iters: 930, Total loss: 0.050, Loss x: 0.053, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.848 [2022-11-26 06:40:49,982][ INFO] Iters: 1240, Total loss: 0.049, Loss x: 0.053, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.850 [2022-11-26 06:43:15,828][ INFO] Iters: 1550, Total loss: 0.049, Loss x: 0.052, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.851 [2022-11-26 06:45:41,294][ INFO] Iters: 1860, Total loss: 0.050, Loss x: 0.053, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.850 [2022-11-26 06:48:06,862][ INFO] Iters: 2170, Total loss: 0.049, Loss x: 0.052, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.852 [2022-11-26 06:51:17,615][ INFO] Evaluation original >>>> meanIOU: 74.23
[2022-11-26 06:51:17,615][ INFO] ===========> Epoch: 42, LR: 0.0003, Previous best: 75.50 [2022-11-26 06:51:18,636][ INFO] Iters: 0, Total loss: 0.082, Loss x: 0.122, Loss s: 0.080, Loss w_fp: 0.003, Mask: 0.934 [2022-11-26 06:53:44,099][ INFO] Iters: 310, Total loss: 0.046, Loss x: 0.051, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.860 [2022-11-26 06:56:09,596][ INFO] Iters: 620, Total loss: 0.047, Loss x: 0.050, Loss s: 0.080, Loss w_fp: 0.006, Mask: 0.861 [2022-11-26 06:58:35,110][ INFO] Iters: 930, Total loss: 0.047, Loss x: 0.050, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.857 [2022-11-26 07:01:00,495][ INFO] Iters: 1240, Total loss: 0.048, Loss x: 0.050, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.855 [2022-11-26 07:03:25,899][ INFO] Iters: 1550, Total loss: 0.048, Loss x: 0.051, Loss s: 0.084, Loss w_fp: 0.007, Mask: 0.857 [2022-11-26 07:05:51,458][ INFO] Iters: 1860, Total loss: 0.048, Loss x: 0.051, Loss s: 0.084, Loss w_fp: 0.007, Mask: 0.857 [2022-11-26 07:08:16,978][ INFO] Iters: 2170, Total loss: 0.048, Loss x: 0.051, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.857 [2022-11-26 07:11:28,024][ INFO] Evaluation original >>>> meanIOU: 73.96
[2022-11-26 07:11:28,024][ INFO] ===========> Epoch: 43, LR: 0.0002, Previous best: 75.50 [2022-11-26 07:11:28,965][ INFO] Iters: 0, Total loss: 0.066, Loss x: 0.053, Loss s: 0.147, Loss w_fp: 0.008, Mask: 0.662 [2022-11-26 07:13:54,466][ INFO] Iters: 310, Total loss: 0.050, Loss x: 0.052, Loss s: 0.087, Loss w_fp: 0.008, Mask: 0.853 [2022-11-26 07:16:19,959][ INFO] Iters: 620, Total loss: 0.049, Loss x: 0.052, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.855 [2022-11-26 07:18:45,415][ INFO] Iters: 930, Total loss: 0.049, Loss x: 0.052, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.856 [2022-11-26 07:21:10,911][ INFO] Iters: 1240, Total loss: 0.049, Loss x: 0.051, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.856 [2022-11-26 07:23:36,492][ INFO] Iters: 1550, Total loss: 0.049, Loss x: 0.052, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.856 [2022-11-26 07:26:02,107][ INFO] Iters: 1860, Total loss: 0.049, Loss x: 0.052, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.854 [2022-11-26 07:28:27,663][ INFO] Iters: 2170, Total loss: 0.049, Loss x: 0.052, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.853 [2022-11-26 07:31:38,971][ INFO] Evaluation original >>>> meanIOU: 73.28
[2022-11-26 07:31:38,971][ INFO] ===========> Epoch: 44, LR: 0.0002, Previous best: 75.50 [2022-11-26 07:31:39,927][ INFO] Iters: 0, Total loss: 0.028, Loss x: 0.043, Loss s: 0.023, Loss w_fp: 0.003, Mask: 0.564 [2022-11-26 07:34:05,276][ INFO] Iters: 310, Total loss: 0.051, Loss x: 0.052, Loss s: 0.092, Loss w_fp: 0.007, Mask: 0.847 [2022-11-26 07:36:30,847][ INFO] Iters: 620, Total loss: 0.050, Loss x: 0.051, Loss s: 0.092, Loss w_fp: 0.007, Mask: 0.848 [2022-11-26 07:38:56,425][ INFO] Iters: 930, Total loss: 0.049, Loss x: 0.051, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.852 [2022-11-26 07:41:21,879][ INFO] Iters: 1240, Total loss: 0.048, Loss x: 0.051, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.852 [2022-11-26 07:43:47,336][ INFO] Iters: 1550, Total loss: 0.049, Loss x: 0.050, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.852 [2022-11-26 07:46:12,760][ INFO] Iters: 1860, Total loss: 0.049, Loss x: 0.051, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.853 [2022-11-26 07:48:38,283][ INFO] Iters: 2170, Total loss: 0.049, Loss x: 0.051, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.853 [2022-11-26 07:51:50,323][ INFO] Evaluation original >>>> meanIOU: 73.96
[2022-11-26 07:51:50,323][ INFO] ===========> Epoch: 45, LR: 0.0002, Previous best: 75.50 [2022-11-26 07:51:51,311][ INFO] Iters: 0, Total loss: 0.048, Loss x: 0.041, Loss s: 0.105, Loss w_fp: 0.005, Mask: 0.853 [2022-11-26 07:54:16,848][ INFO] Iters: 310, Total loss: 0.049, Loss x: 0.051, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.856 [2022-11-26 07:56:42,407][ INFO] Iters: 620, Total loss: 0.048, Loss x: 0.050, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 07:59:07,930][ INFO] Iters: 930, Total loss: 0.049, Loss x: 0.050, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 08:01:33,449][ INFO] Iters: 1240, Total loss: 0.049, Loss x: 0.050, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 08:03:59,016][ INFO] Iters: 1550, Total loss: 0.049, Loss x: 0.050, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.859 [2022-11-26 08:06:24,576][ INFO] Iters: 1860, Total loss: 0.049, Loss x: 0.050, Loss s: 0.087, Loss w_fp: 0.008, Mask: 0.858 [2022-11-26 08:08:50,084][ INFO] Iters: 2170, Total loss: 0.048, Loss x: 0.050, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.858 [2022-11-26 08:12:01,618][ INFO] Evaluation original >>>> meanIOU: 73.92
[2022-11-26 08:12:01,619][ INFO] ===========> Epoch: 46, LR: 0.0002, Previous best: 75.50 [2022-11-26 08:12:02,567][ INFO] Iters: 0, Total loss: 0.041, Loss x: 0.043, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.894 [2022-11-26 08:14:28,025][ INFO] Iters: 310, Total loss: 0.048, Loss x: 0.049, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 08:16:53,576][ INFO] Iters: 620, Total loss: 0.048, Loss x: 0.049, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.859 [2022-11-26 08:19:19,101][ INFO] Iters: 930, Total loss: 0.048, Loss x: 0.049, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.859 [2022-11-26 08:21:44,638][ INFO] Iters: 1240, Total loss: 0.047, Loss x: 0.049, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.859 [2022-11-26 08:24:10,203][ INFO] Iters: 1550, Total loss: 0.047, Loss x: 0.049, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.859 [2022-11-26 08:26:35,756][ INFO] Iters: 1860, Total loss: 0.047, Loss x: 0.049, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 08:29:01,371][ INFO] Iters: 2170, Total loss: 0.047, Loss x: 0.050, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.858 [2022-11-26 08:32:11,983][ INFO] Evaluation original >>>> meanIOU: 75.14
[2022-11-26 08:32:11,983][ INFO] ===========> Epoch: 47, LR: 0.0002, Previous best: 75.50 [2022-11-26 08:32:12,975][ INFO] Iters: 0, Total loss: 0.058, Loss x: 0.101, Loss s: 0.024, Loss w_fp: 0.004, Mask: 0.937 [2022-11-26 08:34:38,364][ INFO] Iters: 310, Total loss: 0.047, Loss x: 0.050, Loss s: 0.080, Loss w_fp: 0.006, Mask: 0.860 [2022-11-26 08:37:03,967][ INFO] Iters: 620, Total loss: 0.048, Loss x: 0.050, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.859 [2022-11-26 08:39:29,659][ INFO] Iters: 930, Total loss: 0.047, Loss x: 0.050, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.859 [2022-11-26 08:41:55,223][ INFO] Iters: 1240, Total loss: 0.047, Loss x: 0.050, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 08:44:20,985][ INFO] Iters: 1550, Total loss: 0.047, Loss x: 0.049, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 08:46:46,526][ INFO] Iters: 1860, Total loss: 0.048, Loss x: 0.050, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 08:49:12,020][ INFO] Iters: 2170, Total loss: 0.047, Loss x: 0.050, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.858 [2022-11-26 08:52:22,672][ INFO] Evaluation original >>>> meanIOU: 74.65
[2022-11-26 08:52:22,672][ INFO] ===========> Epoch: 48, LR: 0.0002, Previous best: 75.50 [2022-11-26 08:52:23,697][ INFO] Iters: 0, Total loss: 0.048, Loss x: 0.050, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.909 [2022-11-26 08:54:49,490][ INFO] Iters: 310, Total loss: 0.046, Loss x: 0.050, Loss s: 0.078, Loss w_fp: 0.006, Mask: 0.864 [2022-11-26 08:57:15,084][ INFO] Iters: 620, Total loss: 0.046, Loss x: 0.050, Loss s: 0.076, Loss w_fp: 0.007, Mask: 0.863 [2022-11-26 08:59:40,743][ INFO] Iters: 930, Total loss: 0.048, Loss x: 0.052, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.857 [2022-11-26 09:02:06,297][ INFO] Iters: 1240, Total loss: 0.049, Loss x: 0.051, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.855 [2022-11-26 09:04:32,002][ INFO] Iters: 1550, Total loss: 0.048, Loss x: 0.051, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.854 [2022-11-26 09:06:57,657][ INFO] Iters: 1860, Total loss: 0.048, Loss x: 0.050, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.854 [2022-11-26 09:09:23,299][ INFO] Iters: 2170, Total loss: 0.049, Loss x: 0.050, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.855 [2022-11-26 09:12:35,224][ INFO] Evaluation original >>>> meanIOU: 74.26
[2022-11-26 09:12:35,225][ INFO] ===========> Epoch: 49, LR: 0.0002, Previous best: 75.50 [2022-11-26 09:12:36,191][ INFO] Iters: 0, Total loss: 0.043, Loss x: 0.026, Loss s: 0.118, Loss w_fp: 0.003, Mask: 0.927 [2022-11-26 09:15:01,760][ INFO] Iters: 310, Total loss: 0.046, Loss x: 0.049, Loss s: 0.081, Loss w_fp: 0.006, Mask: 0.862 [2022-11-26 09:17:27,337][ INFO] Iters: 620, Total loss: 0.047, Loss x: 0.049, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 09:19:52,931][ INFO] Iters: 930, Total loss: 0.047, Loss x: 0.049, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 09:22:18,609][ INFO] Iters: 1240, Total loss: 0.047, Loss x: 0.049, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 09:24:44,144][ INFO] Iters: 1550, Total loss: 0.047, Loss x: 0.049, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 09:27:09,714][ INFO] Iters: 1860, Total loss: 0.047, Loss x: 0.049, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 09:29:35,470][ INFO] Iters: 2170, Total loss: 0.047, Loss x: 0.049, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.863 [2022-11-26 09:32:47,801][ INFO] Evaluation original >>>> meanIOU: 74.28
[2022-11-26 09:32:47,801][ INFO] ===========> Epoch: 50, LR: 0.0002, Previous best: 75.50 [2022-11-26 09:32:48,807][ INFO] Iters: 0, Total loss: 0.040, Loss x: 0.063, Loss s: 0.032, Loss w_fp: 0.001, Mask: 0.884 [2022-11-26 09:35:14,531][ INFO] Iters: 310, Total loss: 0.046, Loss x: 0.049, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.868 [2022-11-26 09:37:40,257][ INFO] Iters: 620, Total loss: 0.046, Loss x: 0.048, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.862 [2022-11-26 09:40:06,319][ INFO] Iters: 930, Total loss: 0.046, Loss x: 0.047, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 09:42:32,331][ INFO] Iters: 1240, Total loss: 0.047, Loss x: 0.048, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 09:44:58,249][ INFO] Iters: 1550, Total loss: 0.047, Loss x: 0.048, Loss s: 0.085, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 09:47:24,310][ INFO] Iters: 1860, Total loss: 0.046, Loss x: 0.047, Loss s: 0.084, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 09:49:50,410][ INFO] Iters: 2170, Total loss: 0.047, Loss x: 0.047, Loss s: 0.086, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 09:53:03,597][ INFO] Evaluation original >>>> meanIOU: 74.61
[2022-11-26 09:53:03,597][ INFO] ===========> Epoch: 51, LR: 0.0002, Previous best: 75.50 [2022-11-26 09:53:04,569][ INFO] Iters: 0, Total loss: 0.028, Loss x: 0.046, Loss s: 0.016, Loss w_fp: 0.003, Mask: 0.708 [2022-11-26 09:55:30,218][ INFO] Iters: 310, Total loss: 0.048, Loss x: 0.049, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.858 [2022-11-26 09:57:56,160][ INFO] Iters: 620, Total loss: 0.049, Loss x: 0.050, Loss s: 0.088, Loss w_fp: 0.007, Mask: 0.855 [2022-11-26 10:00:21,889][ INFO] Iters: 930, Total loss: 0.048, Loss x: 0.049, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.857 [2022-11-26 10:02:47,769][ INFO] Iters: 1240, Total loss: 0.047, Loss x: 0.048, Loss s: 0.084, Loss w_fp: 0.007, Mask: 0.857 [2022-11-26 10:05:13,434][ INFO] Iters: 1550, Total loss: 0.046, Loss x: 0.048, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.859 [2022-11-26 10:07:39,109][ INFO] Iters: 1860, Total loss: 0.046, Loss x: 0.047, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 10:10:04,923][ INFO] Iters: 2170, Total loss: 0.046, Loss x: 0.048, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 10:13:17,711][ INFO] Evaluation original >>>> meanIOU: 74.48
[2022-11-26 10:13:17,711][ INFO] ===========> Epoch: 52, LR: 0.0002, Previous best: 75.50 [2022-11-26 10:13:18,711][ INFO] Iters: 0, Total loss: 0.050, Loss x: 0.068, Loss s: 0.056, Loss w_fp: 0.008, Mask: 0.751 [2022-11-26 10:15:44,407][ INFO] Iters: 310, Total loss: 0.045, Loss x: 0.048, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.869 [2022-11-26 10:18:10,372][ INFO] Iters: 620, Total loss: 0.046, Loss x: 0.048, Loss s: 0.081, Loss w_fp: 0.006, Mask: 0.862 [2022-11-26 10:20:36,209][ INFO] Iters: 930, Total loss: 0.046, Loss x: 0.048, Loss s: 0.082, Loss w_fp: 0.006, Mask: 0.862 [2022-11-26 10:23:01,994][ INFO] Iters: 1240, Total loss: 0.046, Loss x: 0.048, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 10:25:27,779][ INFO] Iters: 1550, Total loss: 0.046, Loss x: 0.048, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.861 [2022-11-26 10:27:53,873][ INFO] Iters: 1860, Total loss: 0.047, Loss x: 0.049, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.862 [2022-11-26 10:30:19,787][ INFO] Iters: 2170, Total loss: 0.046, Loss x: 0.049, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.863 [2022-11-26 10:33:32,393][ INFO] Evaluation original >>>> meanIOU: 74.49
[2022-11-26 10:33:32,393][ INFO] ===========> Epoch: 53, LR: 0.0002, Previous best: 75.50 [2022-11-26 10:33:33,332][ INFO] Iters: 0, Total loss: 0.026, Loss x: 0.028, Loss s: 0.044, Loss w_fp: 0.003, Mask: 0.903 [2022-11-26 10:35:58,714][ INFO] Iters: 310, Total loss: 0.045, Loss x: 0.048, Loss s: 0.078, Loss w_fp: 0.006, Mask: 0.869 [2022-11-26 10:38:24,337][ INFO] Iters: 620, Total loss: 0.045, Loss x: 0.047, Loss s: 0.080, Loss w_fp: 0.006, Mask: 0.868 [2022-11-26 10:40:50,150][ INFO] Iters: 930, Total loss: 0.045, Loss x: 0.046, Loss s: 0.081, Loss w_fp: 0.006, Mask: 0.865 [2022-11-26 10:43:16,044][ INFO] Iters: 1240, Total loss: 0.045, Loss x: 0.047, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.865 [2022-11-26 10:45:41,914][ INFO] Iters: 1550, Total loss: 0.045, Loss x: 0.047, Loss s: 0.080, Loss w_fp: 0.007, Mask: 0.865 [2022-11-26 10:48:07,904][ INFO] Iters: 1860, Total loss: 0.045, Loss x: 0.047, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.864 [2022-11-26 10:50:33,652][ INFO] Iters: 2170, Total loss: 0.045, Loss x: 0.047, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.864 [2022-11-26 10:53:45,375][ INFO] Evaluation original >>>> meanIOU: 74.35
[2022-11-26 10:53:45,375][ INFO] ===========> Epoch: 54, LR: 0.0002, Previous best: 75.50 [2022-11-26 10:53:46,323][ INFO] Iters: 0, Total loss: 0.032, Loss x: 0.040, Loss s: 0.045, Loss w_fp: 0.002, Mask: 0.881 [2022-11-26 10:56:11,853][ INFO] Iters: 310, Total loss: 0.045, Loss x: 0.048, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.862 [2022-11-26 10:58:37,966][ INFO] Iters: 620, Total loss: 0.045, Loss x: 0.047, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.862 [2022-11-26 11:01:04,017][ INFO] Iters: 930, Total loss: 0.045, Loss x: 0.047, Loss s: 0.080, Loss w_fp: 0.007, Mask: 0.865 [2022-11-26 11:03:30,321][ INFO] Iters: 1240, Total loss: 0.044, Loss x: 0.046, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.866 [2022-11-26 11:05:56,510][ INFO] Iters: 1550, Total loss: 0.044, Loss x: 0.046, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.867 [2022-11-26 11:08:22,646][ INFO] Iters: 1860, Total loss: 0.045, Loss x: 0.047, Loss s: 0.080, Loss w_fp: 0.007, Mask: 0.865 [2022-11-26 11:10:48,504][ INFO] Iters: 2170, Total loss: 0.045, Loss x: 0.047, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.864 [2022-11-26 11:14:01,102][ INFO] Evaluation original >>>> meanIOU: 74.29
[2022-11-26 11:14:01,103][ INFO] ===========> Epoch: 55, LR: 0.0002, Previous best: 75.50 [2022-11-26 11:14:02,100][ INFO] Iters: 0, Total loss: 0.025, Loss x: 0.034, Loss s: 0.030, Loss w_fp: 0.001, Mask: 0.925 [2022-11-26 11:16:27,599][ INFO] Iters: 310, Total loss: 0.045, Loss x: 0.048, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.861 [2022-11-26 11:18:53,285][ INFO] Iters: 620, Total loss: 0.045, Loss x: 0.048, Loss s: 0.076, Loss w_fp: 0.006, Mask: 0.861 [2022-11-26 11:21:18,824][ INFO] Iters: 930, Total loss: 0.045, Loss x: 0.047, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.862 [2022-11-26 11:23:44,518][ INFO] Iters: 1240, Total loss: 0.044, Loss x: 0.047, Loss s: 0.076, Loss w_fp: 0.007, Mask: 0.863 [2022-11-26 11:26:10,227][ INFO] Iters: 1550, Total loss: 0.045, Loss x: 0.047, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.862 [2022-11-26 11:28:35,855][ INFO] Iters: 1860, Total loss: 0.045, Loss x: 0.047, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.863 [2022-11-26 11:31:01,421][ INFO] Iters: 2170, Total loss: 0.045, Loss x: 0.047, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.864 [2022-11-26 11:34:13,650][ INFO] Evaluation original >>>> meanIOU: 74.33
[2022-11-26 11:34:13,650][ INFO] ===========> Epoch: 56, LR: 0.0002, Previous best: 75.50 [2022-11-26 11:34:14,687][ INFO] Iters: 0, Total loss: 0.035, Loss x: 0.037, Loss s: 0.061, Loss w_fp: 0.005, Mask: 0.893 [2022-11-26 11:36:40,506][ INFO] Iters: 310, Total loss: 0.046, Loss x: 0.048, Loss s: 0.083, Loss w_fp: 0.006, Mask: 0.865 [2022-11-26 11:39:06,332][ INFO] Iters: 620, Total loss: 0.045, Loss x: 0.047, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.865 [2022-11-26 11:41:32,073][ INFO] Iters: 930, Total loss: 0.045, Loss x: 0.046, Loss s: 0.083, Loss w_fp: 0.006, Mask: 0.866 [2022-11-26 11:43:57,916][ INFO] Iters: 1240, Total loss: 0.045, Loss x: 0.046, Loss s: 0.082, Loss w_fp: 0.007, Mask: 0.867 [2022-11-26 11:46:23,908][ INFO] Iters: 1550, Total loss: 0.045, Loss x: 0.046, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.867 [2022-11-26 11:48:49,777][ INFO] Iters: 1860, Total loss: 0.045, Loss x: 0.046, Loss s: 0.080, Loss w_fp: 0.007, Mask: 0.867 [2022-11-26 11:51:15,520][ INFO] Iters: 2170, Total loss: 0.045, Loss x: 0.046, Loss s: 0.080, Loss w_fp: 0.007, Mask: 0.868 [2022-11-26 11:54:27,968][ INFO] Evaluation original >>>> meanIOU: 73.50
[2022-11-26 11:54:27,968][ INFO] ===========> Epoch: 57, LR: 0.0002, Previous best: 75.50 [2022-11-26 11:54:28,900][ INFO] Iters: 0, Total loss: 0.038, Loss x: 0.045, Loss s: 0.058, Loss w_fp: 0.002, Mask: 0.883 [2022-11-26 11:56:54,730][ INFO] Iters: 310, Total loss: 0.044, Loss x: 0.046, Loss s: 0.078, Loss w_fp: 0.005, Mask: 0.863 [2022-11-26 11:59:20,621][ INFO] Iters: 620, Total loss: 0.045, Loss x: 0.046, Loss s: 0.081, Loss w_fp: 0.006, Mask: 0.859 [2022-11-26 12:01:46,475][ INFO] Iters: 930, Total loss: 0.045, Loss x: 0.046, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.860 [2022-11-26 12:04:12,280][ INFO] Iters: 1240, Total loss: 0.044, Loss x: 0.046, Loss s: 0.080, Loss w_fp: 0.006, Mask: 0.863 [2022-11-26 12:06:38,034][ INFO] Iters: 1550, Total loss: 0.045, Loss x: 0.046, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.865 [2022-11-26 12:09:03,909][ INFO] Iters: 1860, Total loss: 0.044, Loss x: 0.046, Loss s: 0.080, Loss w_fp: 0.007, Mask: 0.865 [2022-11-26 12:11:30,059][ INFO] Iters: 2170, Total loss: 0.044, Loss x: 0.046, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.865 [2022-11-26 12:14:42,647][ INFO] Evaluation original >>>> meanIOU: 74.24
[2022-11-26 12:14:42,647][ INFO] ===========> Epoch: 58, LR: 0.0002, Previous best: 75.50 [2022-11-26 12:14:43,629][ INFO] Iters: 0, Total loss: 0.038, Loss x: 0.054, Loss s: 0.042, Loss w_fp: 0.003, Mask: 0.819 [2022-11-26 12:17:09,267][ INFO] Iters: 310, Total loss: 0.043, Loss x: 0.045, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.869 [2022-11-26 12:19:35,127][ INFO] Iters: 620, Total loss: 0.043, Loss x: 0.046, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.869 [2022-11-26 12:22:01,166][ INFO] Iters: 930, Total loss: 0.044, Loss x: 0.046, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.870 [2022-11-26 12:24:27,059][ INFO] Iters: 1240, Total loss: 0.044, Loss x: 0.046, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.871 [2022-11-26 12:26:53,013][ INFO] Iters: 1550, Total loss: 0.044, Loss x: 0.046, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.871 [2022-11-26 12:29:19,101][ INFO] Iters: 1860, Total loss: 0.044, Loss x: 0.046, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.871 [2022-11-26 12:31:45,082][ INFO] Iters: 2170, Total loss: 0.044, Loss x: 0.046, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.870 [2022-11-26 12:34:56,832][ INFO] Evaluation original >>>> meanIOU: 75.20
[2022-11-26 12:34:56,832][ INFO] ===========> Epoch: 59, LR: 0.0002, Previous best: 75.50 [2022-11-26 12:34:57,782][ INFO] Iters: 0, Total loss: 0.026, Loss x: 0.026, Loss s: 0.041, Loss w_fp: 0.012, Mask: 0.897 [2022-11-26 12:37:23,437][ INFO] Iters: 310, Total loss: 0.042, Loss x: 0.043, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.874 [2022-11-26 12:39:49,310][ INFO] Iters: 620, Total loss: 0.043, Loss x: 0.044, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.872 [2022-11-26 12:42:15,185][ INFO] Iters: 930, Total loss: 0.043, Loss x: 0.045, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.872 [2022-11-26 12:44:41,006][ INFO] Iters: 1240, Total loss: 0.043, Loss x: 0.044, Loss s: 0.078, Loss w_fp: 0.006, Mask: 0.871 [2022-11-26 12:47:06,909][ INFO] Iters: 1550, Total loss: 0.043, Loss x: 0.045, Loss s: 0.078, Loss w_fp: 0.006, Mask: 0.870 [2022-11-26 12:49:32,478][ INFO] Iters: 1860, Total loss: 0.044, Loss x: 0.045, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.870 [2022-11-26 12:51:57,936][ INFO] Iters: 2170, Total loss: 0.044, Loss x: 0.045, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.869 [2022-11-26 12:55:09,624][ INFO] Evaluation original >>>> meanIOU: 75.18
[2022-11-26 12:55:09,624][ INFO] ===========> Epoch: 60, LR: 0.0001, Previous best: 75.50 [2022-11-26 12:55:10,612][ INFO] Iters: 0, Total loss: 0.045, Loss x: 0.033, Loss s: 0.108, Loss w_fp: 0.006, Mask: 0.899 [2022-11-26 12:57:36,220][ INFO] Iters: 310, Total loss: 0.042, Loss x: 0.044, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.862 [2022-11-26 13:00:02,062][ INFO] Iters: 620, Total loss: 0.042, Loss x: 0.045, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.866 [2022-11-26 13:02:27,916][ INFO] Iters: 930, Total loss: 0.042, Loss x: 0.045, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.866 [2022-11-26 13:04:53,793][ INFO] Iters: 1240, Total loss: 0.042, Loss x: 0.044, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.868 [2022-11-26 13:07:19,528][ INFO] Iters: 1550, Total loss: 0.043, Loss x: 0.045, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.868 [2022-11-26 13:09:45,282][ INFO] Iters: 1860, Total loss: 0.043, Loss x: 0.045, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.869 [2022-11-26 13:12:11,231][ INFO] Iters: 2170, Total loss: 0.042, Loss x: 0.045, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.870 [2022-11-26 13:15:22,930][ INFO] Evaluation original >>>> meanIOU: 73.15
[2022-11-26 13:15:22,931][ INFO] ===========> Epoch: 61, LR: 0.0001, Previous best: 75.50 [2022-11-26 13:15:23,886][ INFO] Iters: 0, Total loss: 0.044, Loss x: 0.063, Loss s: 0.046, Loss w_fp: 0.004, Mask: 0.843 [2022-11-26 13:17:49,647][ INFO] Iters: 310, Total loss: 0.046, Loss x: 0.046, Loss s: 0.087, Loss w_fp: 0.007, Mask: 0.869 [2022-11-26 13:20:15,348][ INFO] Iters: 620, Total loss: 0.045, Loss x: 0.046, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.868 [2022-11-26 13:22:41,402][ INFO] Iters: 930, Total loss: 0.045, Loss x: 0.046, Loss s: 0.080, Loss w_fp: 0.007, Mask: 0.867 [2022-11-26 13:25:06,971][ INFO] Iters: 1240, Total loss: 0.044, Loss x: 0.046, Loss s: 0.078, Loss w_fp: 0.006, Mask: 0.868 [2022-11-26 13:27:33,111][ INFO] Iters: 1550, Total loss: 0.044, Loss x: 0.045, Loss s: 0.079, Loss w_fp: 0.006, Mask: 0.869 [2022-11-26 13:29:58,903][ INFO] Iters: 1860, Total loss: 0.043, Loss x: 0.045, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.870 [2022-11-26 13:32:24,713][ INFO] Iters: 2170, Total loss: 0.043, Loss x: 0.045, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.871 [2022-11-26 13:35:36,523][ INFO] Evaluation original >>>> meanIOU: 74.47
[2022-11-26 13:35:36,523][ INFO] ===========> Epoch: 62, LR: 0.0001, Previous best: 75.50 [2022-11-26 13:35:37,471][ INFO] Iters: 0, Total loss: 0.014, Loss x: 0.004, Loss s: 0.034, Loss w_fp: 0.013, Mask: 0.875 [2022-11-26 13:38:03,005][ INFO] Iters: 310, Total loss: 0.043, Loss x: 0.046, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.869 [2022-11-26 13:40:28,712][ INFO] Iters: 620, Total loss: 0.044, Loss x: 0.045, Loss s: 0.080, Loss w_fp: 0.007, Mask: 0.865 [2022-11-26 13:42:54,664][ INFO] Iters: 930, Total loss: 0.044, Loss x: 0.045, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.870 [2022-11-26 13:45:20,332][ INFO] Iters: 1240, Total loss: 0.043, Loss x: 0.044, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.871 [2022-11-26 13:47:46,133][ INFO] Iters: 1550, Total loss: 0.043, Loss x: 0.044, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.870 [2022-11-26 13:50:11,919][ INFO] Iters: 1860, Total loss: 0.043, Loss x: 0.044, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.871 [2022-11-26 13:52:37,632][ INFO] Iters: 2170, Total loss: 0.043, Loss x: 0.044, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.870 [2022-11-26 13:55:49,728][ INFO] Evaluation original >>>> meanIOU: 74.41
[2022-11-26 13:55:49,728][ INFO] ===========> Epoch: 63, LR: 0.0001, Previous best: 75.50 [2022-11-26 13:55:50,670][ INFO] Iters: 0, Total loss: 0.029, Loss x: 0.051, Loss s: 0.015, Loss w_fp: 0.001, Mask: 0.958 [2022-11-26 13:58:16,224][ INFO] Iters: 310, Total loss: 0.042, Loss x: 0.044, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.876 [2022-11-26 14:00:42,107][ INFO] Iters: 620, Total loss: 0.043, Loss x: 0.045, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.873 [2022-11-26 14:03:07,846][ INFO] Iters: 930, Total loss: 0.043, Loss x: 0.045, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.871 [2022-11-26 14:05:33,621][ INFO] Iters: 1240, Total loss: 0.043, Loss x: 0.045, Loss s: 0.076, Loss w_fp: 0.006, Mask: 0.869 [2022-11-26 14:07:59,267][ INFO] Iters: 1550, Total loss: 0.043, Loss x: 0.045, Loss s: 0.076, Loss w_fp: 0.007, Mask: 0.870 [2022-11-26 14:10:24,949][ INFO] Iters: 1860, Total loss: 0.043, Loss x: 0.044, Loss s: 0.076, Loss w_fp: 0.007, Mask: 0.871 [2022-11-26 14:12:50,610][ INFO] Iters: 2170, Total loss: 0.043, Loss x: 0.045, Loss s: 0.075, Loss w_fp: 0.007, Mask: 0.870 [2022-11-26 14:16:01,629][ INFO] Evaluation original >>>> meanIOU: 74.38
[2022-11-26 14:16:01,630][ INFO] ===========> Epoch: 64, LR: 0.0001, Previous best: 75.50 [2022-11-26 14:16:02,649][ INFO] Iters: 0, Total loss: 0.043, Loss x: 0.064, Loss s: 0.031, Loss w_fp: 0.011, Mask: 0.900 [2022-11-26 14:18:28,307][ INFO] Iters: 310, Total loss: 0.042, Loss x: 0.043, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.869 [2022-11-26 14:20:54,204][ INFO] Iters: 620, Total loss: 0.041, Loss x: 0.043, Loss s: 0.071, Loss w_fp: 0.007, Mask: 0.874 [2022-11-26 14:23:20,072][ INFO] Iters: 930, Total loss: 0.041, Loss x: 0.044, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.873 [2022-11-26 14:25:45,909][ INFO] Iters: 1240, Total loss: 0.042, Loss x: 0.044, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.872 [2022-11-26 14:28:11,749][ INFO] Iters: 1550, Total loss: 0.042, Loss x: 0.043, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.873 [2022-11-26 14:30:37,476][ INFO] Iters: 1860, Total loss: 0.042, Loss x: 0.044, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.872 [2022-11-26 14:33:03,438][ INFO] Iters: 2170, Total loss: 0.042, Loss x: 0.043, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.873 [2022-11-26 14:36:15,417][ INFO] Evaluation original >>>> meanIOU: 74.00
[2022-11-26 14:36:15,418][ INFO] ===========> Epoch: 65, LR: 0.0001, Previous best: 75.50 [2022-11-26 14:36:16,383][ INFO] Iters: 0, Total loss: 0.120, Loss x: 0.051, Loss s: 0.358, Loss w_fp: 0.017, Mask: 0.739 [2022-11-26 14:38:41,883][ INFO] Iters: 310, Total loss: 0.045, Loss x: 0.045, Loss s: 0.083, Loss w_fp: 0.007, Mask: 0.867 [2022-11-26 14:41:07,715][ INFO] Iters: 620, Total loss: 0.044, Loss x: 0.044, Loss s: 0.081, Loss w_fp: 0.007, Mask: 0.869 [2022-11-26 14:43:33,642][ INFO] Iters: 930, Total loss: 0.043, Loss x: 0.044, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.872 [2022-11-26 14:45:59,682][ INFO] Iters: 1240, Total loss: 0.042, Loss x: 0.044, Loss s: 0.076, Loss w_fp: 0.007, Mask: 0.872 [2022-11-26 14:48:25,603][ INFO] Iters: 1550, Total loss: 0.042, Loss x: 0.044, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.873 [2022-11-26 14:50:51,235][ INFO] Iters: 1860, Total loss: 0.042, Loss x: 0.044, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 14:53:16,984][ INFO] Iters: 2170, Total loss: 0.042, Loss x: 0.044, Loss s: 0.073, Loss w_fp: 0.007, Mask: 0.874 [2022-11-26 14:56:29,377][ INFO] Evaluation original >>>> meanIOU: 73.41
[2022-11-26 14:56:29,377][ INFO] ===========> Epoch: 66, LR: 0.0001, Previous best: 75.50 [2022-11-26 14:56:30,308][ INFO] Iters: 0, Total loss: 0.037, Loss x: 0.030, Loss s: 0.085, Loss w_fp: 0.004, Mask: 0.910 [2022-11-26 14:58:56,270][ INFO] Iters: 310, Total loss: 0.039, Loss x: 0.042, Loss s: 0.068, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 15:01:22,247][ INFO] Iters: 620, Total loss: 0.040, Loss x: 0.042, Loss s: 0.071, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 15:03:48,455][ INFO] Iters: 930, Total loss: 0.042, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.873 [2022-11-26 15:06:14,616][ INFO] Iters: 1240, Total loss: 0.042, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 15:08:40,501][ INFO] Iters: 1550, Total loss: 0.042, Loss x: 0.043, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 15:11:06,328][ INFO] Iters: 1860, Total loss: 0.042, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 15:13:32,193][ INFO] Iters: 2170, Total loss: 0.042, Loss x: 0.043, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 15:16:45,312][ INFO] Evaluation original >>>> meanIOU: 74.90
[2022-11-26 15:16:45,312][ INFO] ===========> Epoch: 67, LR: 0.0001, Previous best: 75.50 [2022-11-26 15:16:46,296][ INFO] Iters: 0, Total loss: 0.028, Loss x: 0.037, Loss s: 0.030, Loss w_fp: 0.009, Mask: 0.900 [2022-11-26 15:19:12,017][ INFO] Iters: 310, Total loss: 0.043, Loss x: 0.045, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.883 [2022-11-26 15:21:37,881][ INFO] Iters: 620, Total loss: 0.042, Loss x: 0.044, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 15:24:03,621][ INFO] Iters: 930, Total loss: 0.042, Loss x: 0.043, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 15:26:29,487][ INFO] Iters: 1240, Total loss: 0.041, Loss x: 0.043, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 15:28:55,299][ INFO] Iters: 1550, Total loss: 0.041, Loss x: 0.043, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.875 [2022-11-26 15:31:20,999][ INFO] Iters: 1860, Total loss: 0.042, Loss x: 0.043, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 15:33:46,605][ INFO] Iters: 2170, Total loss: 0.042, Loss x: 0.043, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 15:36:58,628][ INFO] Evaluation original >>>> meanIOU: 74.40
[2022-11-26 15:36:58,628][ INFO] ===========> Epoch: 68, LR: 0.0001, Previous best: 75.50 [2022-11-26 15:36:59,587][ INFO] Iters: 0, Total loss: 0.036, Loss x: 0.031, Loss s: 0.078, Loss w_fp: 0.003, Mask: 0.893 [2022-11-26 15:39:25,359][ INFO] Iters: 310, Total loss: 0.043, Loss x: 0.043, Loss s: 0.078, Loss w_fp: 0.006, Mask: 0.873 [2022-11-26 15:41:51,302][ INFO] Iters: 620, Total loss: 0.044, Loss x: 0.043, Loss s: 0.082, Loss w_fp: 0.006, Mask: 0.871 [2022-11-26 15:44:17,272][ INFO] Iters: 930, Total loss: 0.043, Loss x: 0.044, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 15:46:43,027][ INFO] Iters: 1240, Total loss: 0.043, Loss x: 0.043, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 15:49:08,844][ INFO] Iters: 1550, Total loss: 0.043, Loss x: 0.043, Loss s: 0.079, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 15:51:34,646][ INFO] Iters: 1860, Total loss: 0.043, Loss x: 0.043, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.873 [2022-11-26 15:54:00,462][ INFO] Iters: 2170, Total loss: 0.043, Loss x: 0.043, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.874 [2022-11-26 15:57:12,666][ INFO] Evaluation original >>>> meanIOU: 73.46
[2022-11-26 15:57:12,667][ INFO] ===========> Epoch: 69, LR: 0.0001, Previous best: 75.50 [2022-11-26 15:57:13,584][ INFO] Iters: 0, Total loss: 0.020, Loss x: 0.019, Loss s: 0.040, Loss w_fp: 0.002, Mask: 0.936 [2022-11-26 15:59:39,474][ INFO] Iters: 310, Total loss: 0.042, Loss x: 0.042, Loss s: 0.078, Loss w_fp: 0.007, Mask: 0.883 [2022-11-26 16:02:05,623][ INFO] Iters: 620, Total loss: 0.042, Loss x: 0.043, Loss s: 0.075, Loss w_fp: 0.007, Mask: 0.880 [2022-11-26 16:04:31,799][ INFO] Iters: 930, Total loss: 0.042, Loss x: 0.043, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.879 [2022-11-26 16:06:57,971][ INFO] Iters: 1240, Total loss: 0.042, Loss x: 0.043, Loss s: 0.077, Loss w_fp: 0.006, Mask: 0.878 [2022-11-26 16:09:23,926][ INFO] Iters: 1550, Total loss: 0.042, Loss x: 0.043, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.877 [2022-11-26 16:11:49,954][ INFO] Iters: 1860, Total loss: 0.042, Loss x: 0.043, Loss s: 0.076, Loss w_fp: 0.007, Mask: 0.876 [2022-11-26 16:14:16,064][ INFO] Iters: 2170, Total loss: 0.042, Loss x: 0.043, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 16:17:27,339][ INFO] Evaluation original >>>> meanIOU: 74.04
[2022-11-26 16:17:27,339][ INFO] ===========> Epoch: 70, LR: 0.0001, Previous best: 75.50 [2022-11-26 16:17:28,286][ INFO] Iters: 0, Total loss: 0.067, Loss x: 0.055, Loss s: 0.154, Loss w_fp: 0.004, Mask: 0.897 [2022-11-26 16:19:53,816][ INFO] Iters: 310, Total loss: 0.042, Loss x: 0.044, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.877 [2022-11-26 16:22:19,542][ INFO] Iters: 620, Total loss: 0.041, Loss x: 0.043, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 16:24:45,129][ INFO] Iters: 930, Total loss: 0.041, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 16:27:10,740][ INFO] Iters: 1240, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.875 [2022-11-26 16:29:36,433][ INFO] Iters: 1550, Total loss: 0.042, Loss x: 0.042, Loss s: 0.076, Loss w_fp: 0.007, Mask: 0.873 [2022-11-26 16:32:02,092][ INFO] Iters: 1860, Total loss: 0.041, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.007, Mask: 0.872 [2022-11-26 16:34:27,946][ INFO] Iters: 2170, Total loss: 0.042, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.007, Mask: 0.872 [2022-11-26 16:37:40,700][ INFO] Evaluation original >>>> meanIOU: 74.45
[2022-11-26 16:37:40,700][ INFO] ===========> Epoch: 71, LR: 0.0001, Previous best: 75.50 [2022-11-26 16:37:41,687][ INFO] Iters: 0, Total loss: 0.034, Loss x: 0.042, Loss s: 0.050, Loss w_fp: 0.003, Mask: 0.958 [2022-11-26 16:40:07,409][ INFO] Iters: 310, Total loss: 0.042, Loss x: 0.040, Loss s: 0.079, Loss w_fp: 0.007, Mask: 0.872 [2022-11-26 16:42:33,304][ INFO] Iters: 620, Total loss: 0.041, Loss x: 0.041, Loss s: 0.075, Loss w_fp: 0.007, Mask: 0.875 [2022-11-26 16:44:59,122][ INFO] Iters: 930, Total loss: 0.041, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.007, Mask: 0.874 [2022-11-26 16:47:25,134][ INFO] Iters: 1240, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.874 [2022-11-26 16:49:51,268][ INFO] Iters: 1550, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.876 [2022-11-26 16:52:17,082][ INFO] Iters: 1860, Total loss: 0.041, Loss x: 0.042, Loss s: 0.073, Loss w_fp: 0.007, Mask: 0.876 [2022-11-26 16:54:42,751][ INFO] Iters: 2170, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.876 [2022-11-26 16:57:54,588][ INFO] Evaluation original >>>> meanIOU: 74.28
[2022-11-26 16:57:54,589][ INFO] ===========> Epoch: 72, LR: 0.0001, Previous best: 75.50 [2022-11-26 16:57:55,606][ INFO] Iters: 0, Total loss: 0.021, Loss x: 0.024, Loss s: 0.031, Loss w_fp: 0.003, Mask: 0.906 [2022-11-26 17:00:21,296][ INFO] Iters: 310, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.873 [2022-11-26 17:02:47,255][ INFO] Iters: 620, Total loss: 0.040, Loss x: 0.042, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.872 [2022-11-26 17:05:13,095][ INFO] Iters: 930, Total loss: 0.041, Loss x: 0.042, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.872 [2022-11-26 17:07:38,972][ INFO] Iters: 1240, Total loss: 0.040, Loss x: 0.042, Loss s: 0.071, Loss w_fp: 0.007, Mask: 0.872 [2022-11-26 17:10:04,906][ INFO] Iters: 1550, Total loss: 0.040, Loss x: 0.042, Loss s: 0.071, Loss w_fp: 0.007, Mask: 0.874 [2022-11-26 17:12:30,715][ INFO] Iters: 1860, Total loss: 0.041, Loss x: 0.042, Loss s: 0.071, Loss w_fp: 0.007, Mask: 0.875 [2022-11-26 17:14:56,443][ INFO] Iters: 2170, Total loss: 0.041, Loss x: 0.042, Loss s: 0.071, Loss w_fp: 0.007, Mask: 0.875 [2022-11-26 17:18:08,370][ INFO] Evaluation original >>>> meanIOU: 73.72
[2022-11-26 17:18:08,370][ INFO] ===========> Epoch: 73, LR: 0.0001, Previous best: 75.50 [2022-11-26 17:18:09,303][ INFO] Iters: 0, Total loss: 0.036, Loss x: 0.055, Loss s: 0.021, Loss w_fp: 0.012, Mask: 0.858 [2022-11-26 17:20:35,162][ INFO] Iters: 310, Total loss: 0.042, Loss x: 0.043, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.869 [2022-11-26 17:23:01,109][ INFO] Iters: 620, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 17:25:27,178][ INFO] Iters: 930, Total loss: 0.041, Loss x: 0.043, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.874 [2022-11-26 17:27:53,151][ INFO] Iters: 1240, Total loss: 0.042, Loss x: 0.043, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 17:30:19,070][ INFO] Iters: 1550, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.875 [2022-11-26 17:32:44,909][ INFO] Iters: 1860, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.876 [2022-11-26 17:35:11,114][ INFO] Iters: 2170, Total loss: 0.041, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.876 [2022-11-26 17:38:25,497][ INFO] Evaluation original >>>> meanIOU: 75.23
[2022-11-26 17:38:25,498][ INFO] ===========> Epoch: 74, LR: 0.0000, Previous best: 75.50 [2022-11-26 17:38:26,570][ INFO] Iters: 0, Total loss: 0.027, Loss x: 0.040, Loss s: 0.012, Loss w_fp: 0.017, Mask: 0.965 [2022-11-26 17:40:52,452][ INFO] Iters: 310, Total loss: 0.039, Loss x: 0.040, Loss s: 0.070, Loss w_fp: 0.006, Mask: 0.879 [2022-11-26 17:43:18,544][ INFO] Iters: 620, Total loss: 0.040, Loss x: 0.042, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.877 [2022-11-26 17:45:44,546][ INFO] Iters: 930, Total loss: 0.040, Loss x: 0.042, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.877 [2022-11-26 17:48:10,223][ INFO] Iters: 1240, Total loss: 0.041, Loss x: 0.042, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.877 [2022-11-26 17:50:36,061][ INFO] Iters: 1550, Total loss: 0.041, Loss x: 0.042, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.877 [2022-11-26 17:53:01,906][ INFO] Iters: 1860, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.878 [2022-11-26 17:55:27,752][ INFO] Iters: 2170, Total loss: 0.041, Loss x: 0.041, Loss s: 0.074, Loss w_fp: 0.007, Mask: 0.878 [2022-11-26 17:58:40,788][ INFO] Evaluation original >>>> meanIOU: 74.61
[2022-11-26 17:58:40,789][ INFO] ===========> Epoch: 75, LR: 0.0000, Previous best: 75.50 [2022-11-26 17:58:41,776][ INFO] Iters: 0, Total loss: 0.044, Loss x: 0.064, Loss s: 0.040, Loss w_fp: 0.007, Mask: 0.950 [2022-11-26 18:01:07,456][ INFO] Iters: 310, Total loss: 0.039, Loss x: 0.042, Loss s: 0.067, Loss w_fp: 0.006, Mask: 0.885 [2022-11-26 18:03:33,128][ INFO] Iters: 620, Total loss: 0.039, Loss x: 0.041, Loss s: 0.067, Loss w_fp: 0.006, Mask: 0.881 [2022-11-26 18:05:59,445][ INFO] Iters: 930, Total loss: 0.040, Loss x: 0.042, Loss s: 0.070, Loss w_fp: 0.006, Mask: 0.880 [2022-11-26 18:08:25,245][ INFO] Iters: 1240, Total loss: 0.041, Loss x: 0.042, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.878 [2022-11-26 18:10:51,085][ INFO] Iters: 1550, Total loss: 0.041, Loss x: 0.042, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.879 [2022-11-26 18:13:16,942][ INFO] Iters: 1860, Total loss: 0.041, Loss x: 0.041, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.878 [2022-11-26 18:15:42,945][ INFO] Iters: 2170, Total loss: 0.040, Loss x: 0.041, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.879 [2022-11-26 18:18:56,812][ INFO] Evaluation original >>>> meanIOU: 73.65
[2022-11-26 18:18:56,813][ INFO] ===========> Epoch: 76, LR: 0.0000, Previous best: 75.50 [2022-11-26 18:18:57,858][ INFO] Iters: 0, Total loss: 0.019, Loss x: 0.028, Loss s: 0.017, Loss w_fp: 0.002, Mask: 0.947 [2022-11-26 18:21:23,727][ INFO] Iters: 310, Total loss: 0.038, Loss x: 0.040, Loss s: 0.065, Loss w_fp: 0.006, Mask: 0.883 [2022-11-26 18:23:49,527][ INFO] Iters: 620, Total loss: 0.039, Loss x: 0.041, Loss s: 0.068, Loss w_fp: 0.006, Mask: 0.883 [2022-11-26 18:26:15,655][ INFO] Iters: 930, Total loss: 0.040, Loss x: 0.041, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.881 [2022-11-26 18:28:41,375][ INFO] Iters: 1240, Total loss: 0.040, Loss x: 0.041, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.881 [2022-11-26 18:31:07,247][ INFO] Iters: 1550, Total loss: 0.040, Loss x: 0.041, Loss s: 0.072, Loss w_fp: 0.006, Mask: 0.880 [2022-11-26 18:33:32,964][ INFO] Iters: 1860, Total loss: 0.040, Loss x: 0.041, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.880 [2022-11-26 18:35:58,774][ INFO] Iters: 2170, Total loss: 0.040, Loss x: 0.041, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.879 [2022-11-26 18:39:12,715][ INFO] Evaluation original >>>> meanIOU: 74.40
[2022-11-26 18:39:12,715][ INFO] ===========> Epoch: 77, LR: 0.0000, Previous best: 75.50 [2022-11-26 18:39:13,694][ INFO] Iters: 0, Total loss: 0.023, Loss x: 0.024, Loss s: 0.040, Loss w_fp: 0.005, Mask: 0.893 [2022-11-26 18:41:39,716][ INFO] Iters: 310, Total loss: 0.039, Loss x: 0.040, Loss s: 0.068, Loss w_fp: 0.006, Mask: 0.879 [2022-11-26 18:44:05,647][ INFO] Iters: 620, Total loss: 0.040, Loss x: 0.041, Loss s: 0.071, Loss w_fp: 0.006, Mask: 0.878 [2022-11-26 18:46:31,521][ INFO] Iters: 930, Total loss: 0.040, Loss x: 0.041, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.877 [2022-11-26 18:48:57,314][ INFO] Iters: 1240, Total loss: 0.041, Loss x: 0.042, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.877 [2022-11-26 18:51:23,071][ INFO] Iters: 1550, Total loss: 0.041, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.006, Mask: 0.877 [2022-11-26 18:53:48,921][ INFO] Iters: 1860, Total loss: 0.041, Loss x: 0.042, Loss s: 0.074, Loss w_fp: 0.006, Mask: 0.878 [2022-11-26 18:56:14,890][ INFO] Iters: 2170, Total loss: 0.041, Loss x: 0.041, Loss s: 0.073, Loss w_fp: 0.006, Mask: 0.878 [2022-11-26 18:59:28,298][ INFO] Evaluation original >>>> meanIOU: 74.88
[2022-11-26 18:59:28,298][ INFO] ===========> Epoch: 78, LR: 0.0000, Previous best: 75.50 [2022-11-26 18:59:29,233][ INFO] Iters: 0, Total loss: 0.042, Loss x: 0.070, Loss s: 0.027, Loss w_fp: 0.002, Mask: 0.941 [2022-11-26 19:01:55,023][ INFO] Iters: 310, Total loss: 0.040, Loss x: 0.042, Loss s: 0.071, Loss w_fp: 0.007, Mask: 0.876 [2022-11-26 19:04:21,088][ INFO] Iters: 620, Total loss: 0.042, Loss x: 0.042, Loss s: 0.076, Loss w_fp: 0.007, Mask: 0.877 [2022-11-26 19:06:46,743][ INFO] Iters: 930, Total loss: 0.041, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.007, Mask: 0.876 [2022-11-26 19:09:12,492][ INFO] Iters: 1240, Total loss: 0.042, Loss x: 0.042, Loss s: 0.077, Loss w_fp: 0.007, Mask: 0.876 [2022-11-26 19:11:38,280][ INFO] Iters: 1550, Total loss: 0.041, Loss x: 0.042, Loss s: 0.075, Loss w_fp: 0.007, Mask: 0.878 [2022-11-26 19:14:04,024][ INFO] Iters: 1860, Total loss: 0.041, Loss x: 0.041, Loss s: 0.075, Loss w_fp: 0.007, Mask: 0.879
Since the batch size is reduced by 2 times, I think it can be expected that the performance drops by 1%. You can try to use two GPUs, or reduce the cropping size from 321 to 281 and maintain the batch size as 8 if GPU memory is allowed.
I ran the unimatch with batch size 4 and initial lr 0.0005 on a single GPU for the 1/16 partition of pascal and I took 78.63 mIOU without other change except eliminated distributed code. The best result is trained in epoch 38. This is a bit of a huge difference from your result of 75.50?
@jerrywyn Which part of the distributed code do you cross out? Also, what crop size do you use?
Thanks
Hello, Would it be easy to reproduce the results for pascal dataset on a single gpu? What learning rate is required for training on a single gpu to reproduce the results for FixMatch / UniMatch?
Thanks