=======================================================================
cuda_version=10.2 conda create -n snnrec conda activate snnrec conda install -y pytorch torchvision cudatoolkit=$cuda_version -c pytorch conda install pandas
pip install spikingjelly==0.0.0.0.6
=====================================================================
Usage: python rec_snn.py [-network NETWORK] [-path_to_pretrain_models PATH_TO_PRETRAIN_MODELS] [-path_to_event_files PATH_TO_EVENT_FILES] [-save_path SAVE_PATH] [-height HEIGHT] [-width WIDTH] [-num_events_per_pixel NUM_EVENTS_PER_PIXEL]
For example, to run EVSNN: python rec_snn.py -network EVSNN_LIF_final -path_to_pretrain_models ./pretrained_models/EVSNN.pth
To run PA-EVSNN python rec_snn.py -network PAEVSNN_LIF_AMPLIF_final -path_to_pretrain_models ./pretrained_models/PAEVSNN.pth
======================================================================
minimal_code_snn/ | ├── rec_snn.py - evaluation of trained model |
---|
├── data/ - default directory for storing input data | ├── model/ - models, losses, and metrics | ├── dataset.py | ├── snn_network.py |
---|
├── neurons/ | ├── spiking_neuron.py - spiking neurons, MP neurons |
---|
├── results/ - generated results are saved here
|
└── utils/ - small utility functions
├── util.py
└── ...