Model | 3D AP (Easy,Moderate,Hard) |
---|---|
PointPillars | 77.98, 57.86, 66.02 |
PointPillars+CLOCs | 81.43, 60.05, 67.15 |
Improvement | 3.45, 2.19, 1.13 |
Clone this repository and install required libraries in a seperate virtual environment.
git clone https://github.com/Loahit5101/PointPillars-Camera-LiDAR-Fusion.git
pip install -r requirements.txt
Download point cloud(29GB), images(12 GB), calibration files(16 MB) and labels(5 MB).
Pre-process KITTI dataset
python pre_process_kitti.py --data_root your_dataset_path
Expected structure:
kitti_dataset
|- training
|- calib (#7481 .txt)
|- image_2 (#7481 .png)
|- label_2 (#7481 .txt)
|- velodyne (#7481 .bin)
|- velodyne_reduced (#7481 .bin)
|- testing
|- calib (#7518 .txt)
|- image_2 (#7518 .png)
|- velodyne (#7518 .bin)
|- velodyne_reduced (#7518 .bin)
|- kitti_gt_database (# 19700 .bin)
|- kitti_infos_train.pkl
|- kitti_infos_val.pkl
|- kitti_infos_trainval.pkl
|- kitti_infos_test.pkl
|- kitti_dbinfos_train.pkl
python train_pillars.py --data_root your_dataset_path
python test.py --ckpt pretrained_model_path --pc_path your_pc_path
python evaluate.py --ckpt pretrained_model_path --data_root your_dataset_path
Code to train CLOCs is inside CLOC_fusion folder
CLOCs requires 3D detection results and 2D detection results (from Cascade R-CNN in this case) before nms step. ANy 3D or 2D detector can be used with CLOC provided the detections are in KITTI format.
Run the below command to generate 3D detections or download from below link
python evaluate.py --ckpt pretrained_model_path --data_root your_dataset_path
2D and 3D detections can also be downloaded from this link.
python generate_data.py
Generated inputs are stored in input_data folder
Expected structure:
.
└── clocs_data
├── 2D
│ ├── 000000.txt
│ ├── 000001.txt
│ └── 000002.txt
├── 3D
│ ├── 000000.pkl
│ ├── 000001.pkl
│ └── 000002.pkl
├── index
│ ├── train.txt
│ ├── trainval.txt
│ └── val.txt
├── info
│ ├── kitti_infos_trainval.pkl
│ └── kitti_infos_val.pkl
└── input_data
├── 000000.pt
├── 000001.pt
└── 000002.pt
python train.py
python test.py
python evaluate.py
Pretrained models are available in the pretrained models folder