Other data structures such as arrays, linked list, stack, and queue are linear data structures that store data sequentially. In order to perform any operation in a linear data structure, the time complexity increases with the increase in the data size. But, it is not acceptable in today's computational world.
Different tree data structures allow quicker and easier access to the data as it is a non-linear data structure.
Tree Terminologies
Node
A node is an entity that contains a key or value and pointers to its child nodes.
The last nodes of each path are called leaf nodes or external nodes that do not contain a link/pointer to child nodes.
The node having at least a child node is called an internal node.
Edge
Root
It is the topmost node of a tree.
Height of a Node
The height of a node is the number of edges from the node to the deepest leaf (ie. the longest path from the node to a leaf node).
Depth of a Node
The depth of a node is the number of edges from the root to the node.
Height of a Tree
The height of a Tree is the height of the root node or the depth of the deepest node.
Degree of a Node
The degree of a node is the total number of branches of that node.
Forest
A collection of disjoint trees is called a forest.
Types of Tree
Binary Tree
Binary Search Tree
AVL Tree
B-Tree
C++ Examples
// Implementing Red-Black Tree in C++
include
using namespace std;
struct Node {
int data;
Node parent;
Node left;
Node *right;
int color;
};
typedef Node *NodePtr;
class RedBlackTree {
private:
NodePtr root;
NodePtr TNULL;
Other data structures such as arrays, linked list, stack, and queue are linear data structures that store data sequentially. In order to perform any operation in a linear data structure, the time complexity increases with the increase in the data size. But, it is not acceptable in today's computational world.
Different tree data structures allow quicker and easier access to the data as it is a non-linear data structure. Tree Terminologies Node A node is an entity that contains a key or value and pointers to its child nodes.
The last nodes of each path are called leaf nodes or external nodes that do not contain a link/pointer to child nodes.
The node having at least a child node is called an internal node.
Edge Root It is the topmost node of a tree.
Height of a Node The height of a node is the number of edges from the node to the deepest leaf (ie. the longest path from the node to a leaf node).
Depth of a Node The depth of a node is the number of edges from the root to the node.
Height of a Tree The height of a Tree is the height of the root node or the depth of the deepest node.
Degree of a Node The degree of a node is the total number of branches of that node.
Forest A collection of disjoint trees is called a forest. Types of Tree Binary Tree Binary Search Tree AVL Tree B-Tree
C++ Examples // Implementing Red-Black Tree in C++
include
using namespace std;
struct Node { int data; Node parent; Node left; Node *right; int color; };
typedef Node *NodePtr;
class RedBlackTree { private: NodePtr root; NodePtr TNULL;
void initializeNULLNode(NodePtr node, NodePtr parent) { node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; }
// Preorder void preOrderHelper(NodePtr node) { if (node != TNULL) { cout << node->data << " "; preOrderHelper(node->left); preOrderHelper(node->right); } }
// Inorder void inOrderHelper(NodePtr node) { if (node != TNULL) { inOrderHelper(node->left); cout << node->data << " "; inOrderHelper(node->right); } }
// Post order void postOrderHelper(NodePtr node) { if (node != TNULL) { postOrderHelper(node->left); postOrderHelper(node->right); cout << node->data << " "; } }
NodePtr searchTreeHelper(NodePtr node, int key) { if (node == TNULL || key == node->data) { return node; }
}
// For balancing the tree after deletion void deleteFix(NodePtr x) { NodePtr s; while (x != root && x->color == 0) { if (x == x->parent->left) { s = x->parent->right; if (s->color == 1) { s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; }
}
void rbTransplant(NodePtr u, NodePtr v) { if (u->parent == nullptr) { root = v; } else if (u == u->parent->left) { u->parent->left = v; } else { u->parent->right = v; } v->parent = u->parent; }
void deleteNodeHelper(NodePtr node, int key) { NodePtr z = TNULL; NodePtr x, y; while (node != TNULL) { if (node->data == key) { z = node; }
}
// For balancing the tree after insertion void insertFix(NodePtr k) { NodePtr u; while (k->parent->color == 1) { if (k->parent == k->parent->parent->right) { u = k->parent->parent->left; if (u->color == 1) { u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; } else { if (k == k->parent->left) { k = k->parent; rightRotate(k); } k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); } } else { u = k->parent->parent->right;
}
void printHelper(NodePtr root, string indent, bool last) { if (root != TNULL) { cout << indent; if (last) { cout << "R----"; indent += " "; } else { cout << "L----"; indent += "| "; }
}
public: RedBlackTree() { TNULL = new Node; TNULL->color = 0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; }
void preorder() { preOrderHelper(this->root); }
void inorder() { inOrderHelper(this->root); }
void postorder() { postOrderHelper(this->root); }
NodePtr searchTree(int k) { return searchTreeHelper(this->root, k); }
NodePtr minimum(NodePtr node) { while (node->left != TNULL) { node = node->left; } return node; }
NodePtr maximum(NodePtr node) { while (node->right != TNULL) { node = node->right; } return node; }
NodePtr successor(NodePtr x) { if (x->right != TNULL) { return minimum(x->right); }
}
NodePtr predecessor(NodePtr x) { if (x->left != TNULL) { return maximum(x->left); }
}
void leftRotate(NodePtr x) { NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) { y->left->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; x->parent = y; }
void rightRotate(NodePtr x) { NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) { y->right->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->right) { x->parent->right = y; } else { x->parent->left = y; } y->right = x; x->parent = y; }
// Inserting a node void insert(int key) { NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1;
}
NodePtr getRoot() { return this->root; }
void deleteNode(int data) { deleteNodeHelper(this->root, data); }
void printTree() { if (root) { printHelper(this->root, "", true); } } };
int main() { RedBlackTree bst; bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57);
bst.printTree(); cout << endl << "After deleting" << endl; bst.deleteNode(40); bst.printTree(); }