Open shahik opened 3 years ago
hi : ) I also encountered a similar situation, so how did you solve it?
this project is abandoned - use https://github.com/NVlabs/stylegan2-ada-pytorch - you are going to want a newer cuda driver docker needs NVIDIA driver release r455.23 and above
@antcarryelephant I solved it as,
Deploy Cuda 10 deeplearning notebook google click to deploy Run JupyterLab in Cloud: gcloud compute instances describe --project [projectName] --zone [zonename] deeplearning-1-vm | grep googleusercontent.com | grep datalab
export PROJECT_ID="project name" export ZONE="zonename" export INSTANCE_NAME="instancename" gcloud compute ssh --project $PROJECT_ID --zone $ZONE \ $INSTANCE_NAME -- -L 8080:localhost:8080
set gcc version:
sudo mkdir -p /usr/local/cuda/bin sudo apt-get install gcc-7 g++-7 sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 10 sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7 10 as described here, https://askubuntu.com/questions/26498/how-to-choose-the-default-gcc-and-g-version https://stackoverflow.com/questions/6622454/cuda-incompatible-with-my-gcc-version
@antcarryelephant check if 'tensorflow-gpu' is installed , you can install it with 'pip install tensorflow-gpu'
@antcarryelephant check if 'tensorflow-gpu' is installed , you can install it with 'pip install tensorflow-gpu'
thanks, that solved my issue. I've sent a tip
the error persists
Im still having the same exact error, with no fix.
I have installed TensorFlow-gpu, but still cannot work.
I have installed TensorFlow-gpu, but still cannot work.
I had the same issue and I solved it using conda: conda install tensorflow-gpu==1.14
I fixed about this error in /NVlabs/stylegan2/dnnlib by changing some codes. I don't know my solution is the same about this error, but i hope it can solve this error.
In my case, i changed the below cold, because i use Tesla V100. if i printed device_lib.list_local_devices(), i found that the device_type is 'XLA_GPU', is not 'GPU'. ---previous gpus = [ x for x in device_lib.list_local_devices() if x.device_type == 'GPU'] ---now gpus = [ x for x in device_lib.list_local_devices() if x.device_type == 'XLA_GPU']
@ihyunmin in which file/s did you change the command?
@liavke It is in the /NVlabs/stylegan2/dnnlib file, and I don't know this repository has same code.
@ihyunmin your solution helps me a lot, thank you!!
stylegan2/dnnlib/tflib/custom_ops.py line 50 change to gpus = [ x for x in device_lib.list_local_devices() if x.device_type == 'XLA_GPU']
Hi, I have trained on colab all is Perfect but when I train using Google Cloud Notebook I am getting RuntimeError: No GPU devices found. I have installed tensorflow gpu using, pip install tensorflow-gpu==1.14.0 also tried with 1 & 4 gpus. Any solution Plz?
Constructing networks... Setting up TensorFlow plugin "fused_bias_act.cu": Failed! Traceback (most recent call last): File "train.py", line 561, in
main()
File "train.py", line 553, in main
run_training(vars(args))
File "train.py", line 451, in run_training
training_loop.training_loop(training_options)
File "/jet/prs/workspace/stylegan2-ada/training/training_loop.py", line 123, in training_loop
Gs = G.clone('Gs')
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/network.py", line 457, in clone
net.copy_vars_from(self)
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/network.py", line 490, in copy_vars_from
src_net._get_vars()
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/network.py", line 297, in _get_vars
self._vars = OrderedDict(self._get_own_vars())
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/network.py", line 286, in _get_own_vars
self._init_graph()
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/network.py", line 151, in _init_graph
out_expr = self._build_func(*self._input_templates, *build_kwargs)
File "/jet/prs/workspace/stylegan2-ada/training/networks.py", line 231, in G_main
num_layers = components.synthesis.input_shape[1]
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/network.py", line 232, in input_shape
return self.input_shapes[0]
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/network.py", line 219, in input_shapes
self._input_shapes = [t.shape.as_list() for t in self.input_templates]
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/network.py", line 267, in input_templates
self._init_graph()
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/network.py", line 151, in _init_graph
out_expr = self._build_func(self._input_templates, **build_kwargs)
File "/jet/prs/workspace/stylegan2-ada/training/networks.py", line 439, in G_synthesis
x = layer(x, layer_idx=0, fmaps=nf(1), kernel=3)
File "/jet/prs/workspace/stylegan2-ada/training/networks.py", line 392, in layer
x = modulated_conv2d_layer(x, dlatents_in[:, layer_idx], fmaps=fmaps, kernel=kernel, up=up, resample_kernel=resample_kernel, fused_modconv=fused_modconv)
File "/jet/prs/workspace/stylegan2-ada/training/networks.py", line 105, in modulated_conv2d_layer
s = apply_bias_act(s, bias_var='mod_bias', trainable=trainable) + 1 # [BI] Add bias (initially 1).
File "/jet/prs/workspace/stylegan2-ada/training/networks.py", line 50, in apply_bias_act
return fused_bias_act(x, b=tf.cast(b, x.dtype), act=act, gain=gain, clamp=clamp)
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/ops/fused_bias_act.py", line 72, in fused_bias_act
return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain, clamp=clamp)
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/ops/fused_bias_act.py", line 132, in _fused_bias_act_cuda
cuda_op = _get_plugin().fused_bias_act
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/ops/fused_bias_act.py", line 18, in _get_plugin
return custom_ops.get_plugin(os.path.splitext(file)[0] + '.cu')
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/custom_ops.py", line 139, in get_plugin
compile_opts += f' --gpu-architecture={_get_cuda_gpu_arch_string()}'
File "/jet/prs/workspace/stylegan2-ada/dnnlib/tflib/custom_ops.py", line 60, in _get_cuda_gpu_arch_string
raise RuntimeError('No GPU devices found')
RuntimeError: No GPU devices found
NVIDIA-SMI 396.51 Driver Version: 396.51 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla P100-PCIE... Off | 00000000:00:04.0 Off | 0 | | N/A 38C P0 27W / 250W | 0MiB / 16280MiB | 0% Default | +-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | No running processes found |
'''