Nixtla / neuralforecast

Scalable and user friendly neural :brain: forecasting algorithms.
https://nixtlaverse.nixtla.io/neuralforecast
Apache License 2.0
3.13k stars 362 forks source link

[<Library component: Models|Core|etc...>] #1180

Open HAUNGTOFU opened 1 month ago

HAUNGTOFU commented 1 month ago

Description

model2=[TiDE(h=horizon, input_size=12, loss=MAE(), scaler_type='minmax', learning_rate=1e-3, max_steps=100, val_check_steps=100, early_stop_patience_steps=4, futr_exog_list=['vacation_num'], batch_size=32)] model3=[TiDE(h=horizon, input_size=12, loss=MAE(), scaler_type='minmax', learning_rate=1e-3, max_steps=100, val_check_steps=100, early_stop_patience_steps=4, futr_exog_list=['timeinformation'], batch_size=32)] I added two covariates separately, but why are the prediction results exactly the same?

Link

No response