Open sx349 opened 8 months ago
https://pe-cn.github.io/875/
Problem 875 Quadruple CongruenceFor a positive integer $n$ we define $q(n)$ to be the number of solutions to: $$a_1^2+a_2^2+a_3^2+a_4^2 \equiv b_1^2+b_2^2+b_3^2+b_4^2 \pmod n$$ where $0 \leq a_i, b_i
https://pe-cn.github.io/875/
Problem 875 Quadruple CongruenceFor a positive integer $n$ we define $q(n)$ to be the number of solutions to: $$a_1^2+a_2^2+a_3^2+a_4^2 \equiv b_1^2+b_2^2+b_3^2+b_4^2 \pmod n$$ where $0 \leq a_i, b_i