PistonY / ModelZoo.pytorch

Hands on Imagenet training. Unofficial ModelZoo project on Pytorch. MobileNetV3 Top1 75.64🌟 GhostNet1.3x 75.78🌟
MIT License
49 stars 4 forks source link
imagenet mobilenet mobilenetv3 modelzoo pre-trained python3 pytorch resnet sota traicks training

ModelZoo for Pytorch

This is a model zoo project under Pytorch. In this repo I will implement some of basic classification models which have good performance on ImageNet. Then I will train them in most fair way as possible and try my best to get SOTA model on ImageNet. In this repo I'll only consider FP16.

Usage

Environment

Requirement

LMDB Dataset

If you found any IO bottleneck please use LMDB format dataset. A good way is try both and find out which is more faster.

I provide conversion script here.

Train script

python distribute_train_script --params

Here is a example

python distribute_train_script.py --data-path /s4/piston/ImageNet --batch-size 256 --dtype float16 \
                                  -j 48 --epochs 360 --lr 2.6 --warmup-epochs 5 --label-smoothing \
                                  --no-wd --wd 0.00003 --model GhostNet --log-interval 150 --model-info \
                                  --dist-url tcp://127.0.0.1:26548 --world-size 1 --rank 0

ToDo

Baseline models

model epochs dtype batch size* gpus lr tricks Params(M)/FLOPs top1/top5 params/logs
resnet50 120 FP16 128 8 0.4 - 25.6/4.1G 77.36/- Google Drive
resnet101 120 FP16 128 8 0.4 - 44.7/7.8G 79.13/94.38 Google Drive
resnet50v2 120 FP16 128 8 0.4 - 25.6/4.1G 77.06/93.44 Google Drive
resnet101v2 120 FP16 128 8 0.4 - 44.6/7.8G 78.90/94.39 Google Drive
ResNext50_32x4d 120 FP16 128 8 0.4 - 25.1/4.2G 79.00/94.39
RegNetX4_0GF 120 FP16 128 8 0.4 - 22.2/4.0G 78.40/94.04
RegNetY4_0GF 120 FP16 128 8 0.4 - 22.1/4.0G 79.22/94.57
RegNetY6_4GF 120 FP16 128 8 0.4 - 31.2/6.4G 79.69/94.82
ResNeST50 120 FP16 128 8 0.4 - 27.5/4.1G 78.62/94.28
mobilenetv1 150 FP16 256 8 0.4 - 4.3/572.2M 72.17/90.70 Google Drive
mobilenetv2 150 FP16 256 8 0.4 - 3.5/305.3M 71.94/90.59 Google Drive
mobilenetv3 Large 360 FP16 256 8 2.6 Label smoothing No decay bias Dropout 5.5/219M 75.64/92.61 Google Drive
mobilenetv3 Small 360 FP16 256 8 2.6 Label smoothing No decay bias Dropout 3.0/57.8M 67.83/87.78
GhostNet1.3 360 FP16 400 8 2.6 Label smoothing No decay bias Dropout 7.4/230.4M 75.78/92.77 Google Drive

Optimized Models(with tricks)

Ablation Study on Tricks

Here are lots of tricks to improve accuracy during this years.(If you have another idea please open an issue.) I want to verify them in a fair way.

Tricks: RandomRotation, OctConv[14], Drop out, Label Smoothing[4], Sync BN, SwitchNorm[6], Mixup[17], no decay bias[7], Cutout[5], Relu6[18], swish activation[10], Stochastic Depth[9], Lookahead Optimizer[11], Pre-active(ResnetV2)[12], DCNv2[13], LIP[16].

Special: Zero-initialize the last BN, just call it 'Zero γ', only for post-active model.

I'll only use 120 epochs and 128*8 batch size to train them. I know some tricks may need train more time or larger batch size but it's not fair for others. You can think of it as a performance in the current situation.

model epochs dtype batch size* gpus lr tricks degree top1/top5 improve params/logs
resnet50 120 FP16 128 8 0.4 - - 77.36/- baseline Google Drive
resnet50 120 FP16 128 8 0.4 Label smoothing smoothing=0.1 77.78/93.80 +0.42 Google Drive
resnet50 120 FP16 128 8 0.4 No decay bias - 77.28/93.61 -0.08 Google Drive
resnet50 120 FP16 128 8 0.4 Sync BN - 77.31/93.49 -0.05 Google Drive
resnet50 120 FP16 128 8 0.4 Mixup alpha=0.2 77.49/93.73 +0.13 missing
resnet50 120 FP16 128 8 0.4 RandomRotation degree=15 76.64/93.28 -1.15 Google Drive
resnet50 120 FP16 128 8 0.4 Cutout read code 77.44/93.62 +0.08 Google Drive
resnet50 120 FP16 128 8 0.4 Dropout rate=0.3 77.11/93.58 -0.25 Google Drive
resnet50 120 FP16 128 8 0.4 Lookahead-SGD - 77.23/93.39 -0.13 Google Drive
resnet50v2 120 FP16 128 8 0.4 pre-active - 77.06/93.44 -0.30 Google Drive
oct_resnet50 120 FP16 128 8 0.4 OctConv alpha=0.125 - -
resnet50 120 FP16 128 8 0.4 Relu6 77.28/93.5 -0.08 Google Drive
resnet50 120 FP16 128 8 0.4 - 77.00/- DDP baseline
resnet50 120 FP16 128 8 0.4 Gradient Centralization Conv only 77.40/93.57 +0.40
resnet50 120 FP16 128 8 0.4 Zero γ 77.24/- +0.24
resnet50 120 FP16 128 8 0.4 No decay bias 77.74/93.77 +0.74
resnet50 120 FP16 128 8 0.4 RandAugment n=2,m=9 76.44/93.18 -0.96
resnet50 120 FP16 128 8 0.4 AutoAugment 76.50/93.23 -0.50

Citation

@misc{ModelZoo.pytorch,
  title = {Basic deep conv neural network reproduce and explore},
  author = {X.Yang},
  URL = {https://github.com/PistonY/ModelZoo.pytorch},
  year = {2019}
  }

Reference