Open kemingc-cmu-F24 opened 1 week ago
修复: D:\GPT-SoVITS-v2-240821\GPT_SoVITS\prepare_datasets\2-get-hubert-wav32k.py 替换以下函数:
def name2go(wav_name, wav_path): hubert_path = f"{hubert_dir}/{wav_name}.pt" if os.path.exists(hubert_path): return tmp_audio = load_audio(wav_path, 32000) tmp_max = np.abs(tmp_audio).max() if tmp_max > 2.2: print(f"{wav_name}-filtered, {tmp_max}") return tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha * 32768)) + ((1 - alpha) * 32768) * tmp_audio tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha * 1145.14)) + ((1 - alpha) * 1145.14) * tmp_audio tmp_audio = librosa.resample(tmp_audio32b, orig_sr=32000, target_sr=16000) tensor_wav16 = torch.from_numpy(tmp_audio).to(device) if is_half: tensor_wav16 = tensor_wav16.half() try: with torch.no_grad(): ssl = model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1, 2).cpu() if torch.isnan(ssl).any(): nan_fails.append((wav_name, wav_path)) print(f"nan filtered: {wav_name}") return wavfile.write(f"{wav32dir}/{wav_name}", 32000, tmp_audio32.astype("int16")) my_save(ssl, hubert_path) except Exception as e: print(f"Error processing {wav_name}: {e}") finally: del tensor_wav16, ssl torch.cuda.empty_cache() gc.collect()
不能每个hubert特征提取都过torch.cuda.empty_cache(),这个函数进for循环会拉低整体速度 看上去是数据nan异常return的话会泄露,那torch.cuda.empty_cache()前要判一下
修复: D:\GPT-SoVITS-v2-240821\GPT_SoVITS\prepare_datasets\2-get-hubert-wav32k.py 替换以下函数: