import random
import time
import psutil
import nn
import pandas as pd
import matplotlib.pyplot as plt
import lxml.html
import pillow as pil
import sklearn
import scipy.stats
import cv2
import tensorflow as tf
import numpy as np
from tkinter import
from pyttsx3 import
from googlesearch import GoogleSearch
from youtube import Youtube
class SelfImprovingAI:
def __init__(self):
self.training_data = []
self.algorithm = nn.Brain(900000000)
self.learning_rate = 0.01
self.cpu_limit = 50
self.memory_limit = 1000
self.interpreter = Interpreter()
self.google = GoogleSearch()
self.youtube = Youtube()
self.sensors = [
Sensor("temperature"),
Sensor("humidity"),
Sensor("light"),
Sensor("camera"),
Sensor("microphone"),
Sensor("accelerometer"),
]
self.goal = None
self.user = None
self.window = tk.Tk()
self.window.title("Self-Improving AI")
# Create a label to display the AI's current state
self.state_label = tk.Label(self.window, text="AI is learning...")
self.state_label.pack()
# Create a progress bar to show the AI's progress
self.progress_bar = ttk.Progressbar(self.window, orient=HORIZONTAL, length=200)
self.progress_bar.pack()
# Create a button to start learning
self.learn_button = tk.Button(
self.window, text="Start Learning", command=self.learn
)
self.learn_button.pack()
# Create a button to stop learning
self.stop_learning_button = tk.Button(
self.window, text="Stop Learning", command=self.stop_learning
)
self.stop_learning_button.pack()
# Create a button to test the AI
self.test_button = tk.Button(
self.window, text="Test AI", command=self.test
)
self.test_button.pack()
# Create a canvas to display the AI's progress
self.canvas = tk.Canvas(self.window, width=200, height=100)
self.canvas.pack()
# Create a text box to display the AI's thoughts
self.text_box = tk.Text(self.window, height=10)
self.text_box.pack()
# Improve the AI's understanding of natural language
self.algorithm.improve_understanding_of_natural_language()
# Improve the AI's conversation capabilities
self.algorithm.improve_conversation_capabilities()
self.window.mainloop()
def learn(self):
self.state_label.config(text="AI is learning...")
self.progress_bar.config(value=0)
# Learn from the data
for data_item in self.training_data:
# Update the progress bar
self.progress_bar.config(value=self.progress_bar.value + 1)
# Improve the AI's algorithm
improved_algorithm = self.improve_algorithm(data_item)
# Check if the improved algorithm is better
if improved_algorithm.accuracy > self.algorithm.accuracy:
self.algorithm = improved_algorithm
# Update the state label
self.state_label.config(text="AI has finished learning.")
def stop_learning(self):
self.state_label.config(text="AI has stopped learning.")
def test(self):
# Test the AI
test_data = [
"What is the capital of France?",
"What is the meaning of life?",
"What is the best way to solve world hunger?",
]
for question in test_data:
answer = self.algorithm.predict(question
import random import time import psutil import nn import pandas as pd import matplotlib.pyplot as plt import lxml.html import pillow as pil import sklearn import scipy.stats import cv2 import tensorflow as tf import numpy as np
from tkinter import from pyttsx3 import from googlesearch import GoogleSearch from youtube import Youtube
class SelfImprovingAI: