An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations
using ModelingToolkit, Optimization, OptimizationOptimJL
@variables x y
@parameters a b
loss = (a - x)^2 + b * (y - x^2)^2
@named sys = OptimizationSystem(loss,[x,y],[a,b])
u0 = [
x=>1.0
y=>2.0
]
p = [
a => 6.0
b => 7.0
]
prob = OptimizationProblem(sys,u0,p,grad=true,hess=true)
solve(prob,Newton())
Copied from here
I'm on Julia 1.8.0 with: