STAREpandas adds SpatioTemporal Adaptive Resolution Encoding (STARE) support to pandas DataFrames.
STAREPandas is the STARE pendant to GeoPandas. It makes working with geospatial data in python easier. It provides file and database I/O functionality and allows to easily perform STARE based spatial operations that would otherwise require a (STARE-extended) spatial database or a geographic information system.
In STAREDataFrames, geometries are represented as sets of STARE triangles or ”trixels”; analogously to GeoPandas geodataframes which represent geometries as WKT. In STARE dataframes, points are represented as STARE trixels at the HTM tree’s leaf level. Polygons are represented as sets of STARE trixels that cover the polygon.
STAREPandas also extends the geopandas file I/O functionality to load some (raster) formats of remote sensing granules and tiles (MOD09, MOD09GA, VNP03) through pyhdf and netcdf4.
STAREPandas depends on pyhdf to read hdf4-eos granules, requiring libhdf4-dev, to build.
Tested on python 3.7.6
On Ubuntu 20.04:
apt install libhdf4-dev
On Centos7:
yum install hdf-devel.x86_64
Alternatively, pyhdf can also be found on conda
conda install -c conda-forge pyhdf
STAREPandas is built on top of pystare.
pip3 install pystare
It is recommendable to install pip packages in a Virtual Environment
mkvirtualevironment starepandas
Make sure pip is up-to-date.
Then install STAREPandas from github.
pip3 install starepandas
Some of the examples require Rtree-linux to be installed to run geopandas spatial joins. As of 2020-08-20, I could not make this work on Centos7 with rtree>0.9 (9.4) as it requires GLIBCXX_3.4.21. I therefor downgrade rtree to rtree-0.8.3 on Centos7
pip3 install "rtree>=0.8,<0.9
This is likely related to rtree issue 120
cd starepandas/
pytests
Some of the examples further require bokeh and pandas_bokeh
starepandas uses sphinx
The dependencies are in docs/source/requirements.txt
pip3 install -r docs/source/requirements.txt
Build the docs with e.g.
cd docs/
make html
The examples/ folder contains notebooks that highlight the usage.
STAREPandas helps integrating STARE in the geospatial data workflow. Building on top of fiona and geopandas, STAREPandas allows to read almost any vector-based spatial data format and convert lat/lon and well-known-text (WKT) representation to STARE indices and covers.
path = geopandas.datasets.get_path('naturalearth_lowres')
world = geopandas.read_file(path)
africa = world[world.continent == 'Africa']
stare = starepandas.sids_from_gdf(africa, level=7, force_ccw=True)
africa = starepandas.STAREDataFrame(africa, stare=stare)
STAREPandas extends the geopandas rich plotting abilities and provides a simple method to generate visualizations of trixels:
trixels = africa.make_trixels()
africa.set_trixels(trixels, inplace=True)
africa.plot(ax=ax, trixels=True, boundary=True, column='name', linewidth=0.2)
STAREPandas extends the file I/O capability with the ability to read common remote-sensing granule data from HDF and netCDF files. STARE indices for the granules can either be generated on demand or read from a companion / sidedcar file.
path= 'data/MYD05_L2.A2020060.1635.061.2020061153519.hdf'
modis = starepandas.read_mod09(path, add_stare=True, adapt_resolution=True)
STAREPandas allows to carry out STARE-based spatial relation tests and spatial joins.
cities = ['Buenos Aires', 'Brasilia', 'Santiago',
'Bogota', 'Caracas', 'Sao Paulo', 'Bridgetown']
latitudes = [-34.58, -15.78, -33.45, 4.60, 10.48, -23.55, 13.1]
longitudes = [-58.66, -47.91, -70.66, -74.08, -66.86, -46.63, -59.62]
data = {'City': cities,
'Latitude': latitudes, 'Longitude': longitudes}
cities = starepandas.STAREDataFrame(data)
stare = starepandas.sids_from_xy(cities.Longitude, cities.Latitude, level=27)
cities.set_sids(stare, inplace=True)
countries = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
countries = countries.sort_values(by='name')
samerica = countries[countries.continent == 'South America']
stare = starepandas.sids_from_gdf(samerica, level=10, force_ccw=True)
samerica = starepandas.STAREDataFrame(samerica, stare=stare)
starepandas.stare_join(samerica, cities, how='left').head()
STAREPandas further allows for STARE-bases intersections:
fname = 'zip://data/amapoly_ivb.zip'
amazon = geopandas.read_file(fname) # Nice flex
amazon = amazon.to_crs('EPSG:4326')
stare = starepandas.sids_from_gdf(amazon, level=10, force_ccw=True)
amazon = starepandas.STAREDataFrame(amazon, stare=stare)
stare_amazon = samerica.stare_intersection(amazon.make_sids.iloc[0])
UserWarning: pyproj unable to set database path _pyproj_global_context_initialize()
Or Invalid projection: EPSG:4326: (Internal Proj Error: proj_create: no database context specified)
This is typically caused by a problem with the PROJ library and Geopandas. So, one potential solution for this is to do the followings:
conda install -c conda-forge proj-data
conda remove geopandas
pip install scipy
pip install pyproj geopandas
conda install -c conda-forge shapely
conda install -c conda-forge matplotlib
import python
print(pyproj.datadir.get_data_dir())
export PROJ_LIB=/path/to/proj/data
2018-2021 STARE development supported by NASA/ACCESS-17 grant 80NSSC18M0118.