Closed jjRen-xd closed 1 year ago
我刚重新跑了下我给的DDP的示例是可以跑起来的,用的0.3.1.post2
我遇到了同样的问题
我遇到了同样的问题
能提供下代码吗?我跑我提供的ddp示例的是没问题的,启动的时候是用启动命令启动的,不是直接运行脚本的
#! -*- coding:utf-8 -*-
# bert+crf用来做实体识别
# 数据集:http://s3.bmio.net/kashgari/china-people-daily-ner-corpus.tar.gz
# [valid_f1] token_level: 97.06; entity_level: 95.90
import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from bert4torch.callbacks import Callback
from bert4torch.snippets import sequence_padding, ListDataset, seed_everything
from bert4torch.layers import CRF
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel, BaseModelDDP
from tqdm import tqdm
import os
DDP_ON = bool(int(os.getenv('DDP_ON', 0)))
if DDP_ON:
torch.distributed.init_process_group(backend='nccl')
rank = int(os.getenv('RANK'))
world_size = int(os.getenv('WORLD_SIZE'))
print("DEBUG: DDP ON-> rank = ", rank, " world_size = ", world_size)
torch.cuda.set_device(rank)
maxlen = 256
batch_size = 32
categories = ['O', 'B-LOC', 'I-LOC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG']
categories_id2label = {i: k for i, k in enumerate(categories)}
categories_label2id = {k: i for i, k in enumerate(categories)}
# BERT base
config_path = '/home/zhouyiyuan/bert_data/model/config.json'
checkpoint_path = '/home/zhouyiyuan/bert_data/model/pytorch_model.bin'
dict_path = '/home/zhouyiyuan/bert_data/model/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 固定seed
seed_everything(42)
# 加载数据集
class MyDataset(ListDataset):
@staticmethod
def load_data(filename):
D = []
with open(filename, encoding='utf-8') as f:
f = f.read()
for l in f.split('\n\n'):
if not l:
continue
d = ['']
for i, c in enumerate(l.split('\n')):
char, flag = c.split(' ')
d[0] += char
if flag[0] == 'B':
d.append([i, i, flag[2:]])
elif flag[0] == 'I':
d[-1][1] = i
D.append(d)
return D
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
def collate_fn(batch):
batch_token_ids, batch_labels = [], []
for d in batch:
tokens = tokenizer.tokenize(d[0], maxlen=maxlen)
mapping = tokenizer.rematch(d[0], tokens)
start_mapping = {j[0]: i for i, j in enumerate(mapping) if j}
end_mapping = {j[-1]: i for i, j in enumerate(mapping) if j}
token_ids = tokenizer.tokens_to_ids(tokens)
labels = np.zeros(len(token_ids))
for start, end, label in d[1:]:
if start in start_mapping and end in end_mapping:
start = start_mapping[start]
end = end_mapping[end]
labels[start] = categories_label2id['B-'+label]
labels[start + 1:end + 1] = categories_label2id['I-'+label]
batch_token_ids.append(token_ids)
batch_labels.append(labels)
batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
batch_labels = torch.tensor(sequence_padding(batch_labels), dtype=torch.long, device=device)
return batch_token_ids, batch_labels
# 转换数据集
train_dataloader = DataLoader(MyDataset('/home/zhouyiyuan/bert_data/china-people-daily-ner-corpus/example.train'), batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
valid_dataloader = DataLoader(MyDataset('/home/zhouyiyuan/bert_data/china-people-daily-ner-corpus/example.dev'), batch_size=batch_size, collate_fn=collate_fn)
# 定义bert上的模型结构
class Model(BaseModel):
def __init__(self):
super().__init__()
self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, segment_vocab_size=0)
self.fc = nn.Linear(768, len(categories)) # 包含首尾
self.crf = CRF(len(categories))
def forward(self, token_ids):
sequence_output = self.bert([token_ids]) # [btz, seq_len, hdsz]
emission_score = self.fc(sequence_output) # [btz, seq_len, tag_size]
attention_mask = token_ids.gt(0).long()
return emission_score, attention_mask
def predict(self, token_ids):
self.eval()
with torch.no_grad():
emission_score, attention_mask = self.forward(token_ids)
best_path = self.crf.decode(emission_score, attention_mask) # [btz, seq_len]
return best_path
model = Model().to(device)
if DDP_ON:
# model = BaseModelDDP(model, device_ids=[rank])
model = BaseModelDDP(model, master_rank=0, device_ids=[rank], output_device=rank, find_unused_parameters=False)
class Loss(nn.Module):
def forward(self, outputs, labels):
return model.module.crf(*outputs, labels)
def acc(y_pred, y_true):
y_pred = y_pred[0]
y_pred = torch.argmax(y_pred, dim=-1)
acc = torch.sum(y_pred.eq(y_true)).item() / y_true.numel()
return {'acc': acc}
# 支持多种自定义metrics = ['accuracy', acc, {acc: acc}]均可
model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5), metrics=acc)
def evaluate(data):
X, Y, Z = 1e-10, 1e-10, 1e-10
X2, Y2, Z2 = 1e-10, 1e-10, 1e-10
for token_ids, label in tqdm(data):
scores = model.predict(token_ids) # [btz, seq_len]
attention_mask = label.gt(0)
# token粒度
X += (scores.eq(label) * attention_mask).sum().item()
Y += scores.gt(0).sum().item()
Z += label.gt(0).sum().item()
# entity粒度
entity_pred = trans_entity2tuple(scores)
entity_true = trans_entity2tuple(label)
X2 += len(entity_pred.intersection(entity_true))
Y2 += len(entity_pred)
Z2 += len(entity_true)
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
f2, precision2, recall2 = 2 * X2 / (Y2 + Z2), X2/ Y2, X2 / Z2
return f1, precision, recall, f2, precision2, recall2
def trans_entity2tuple(scores):
'''把tensor转为(样本id, start, end, 实体类型)的tuple用于计算指标
'''
batch_entity_ids = set()
for i, one_samp in enumerate(scores):
entity_ids = []
for j, item in enumerate(one_samp):
flag_tag = categories_id2label[item.item()]
if flag_tag.startswith('B-'): # B
entity_ids.append([i, j, j, flag_tag[2:]])
elif len(entity_ids) == 0:
continue
elif (len(entity_ids[-1]) > 0) and flag_tag.startswith('I-') and (flag_tag[2:]==entity_ids[-1][-1]): # I
entity_ids[-1][-2] = j
elif len(entity_ids[-1]) > 0:
entity_ids.append([])
for i in entity_ids:
if i:
batch_entity_ids.add(tuple(i))
return batch_entity_ids
class Evaluator(Callback):
"""评估与保存
"""
def __init__(self):
self.best_val_f1 = 0.
def on_epoch_end(self, steps, epoch, logs=None):
f1, precision, recall, f2, precision2, recall2 = evaluate(valid_dataloader)
if f2 > self.best_val_f1:
self.best_val_f1 = f2
model.save_weights('./best_model.pt')
print(f'[val-token level] f1: {f1:.5f}, p: {precision:.5f} r: {recall:.5f}')
print(f'[val-entity level] f1: {f2:.5f}, p: {precision2:.5f} r: {recall2:.5f} best_f1: {self.best_val_f1:.5f}\n')
if __name__ == '__main__':
evaluator = Evaluator()
model.fit(train_dataloader, epochs=20, steps_per_epoch=None, callbacks=[evaluator])
else:
model.load_weights('best_model.pt')
我们发现问题在于torch4keras的BaseModelDDP从多个父类继承过来,包括nn.parallel.DistributedDataParallel(torch库里的类)和Trainer(torch4keras里的类),Trainer把device定义成方法并加了@property装饰器,而在DistributedDataParallel又会对device再进行初始化,于是就会报错了
我们发现问题在于torch4keras的BaseModelDDP从多个父类继承过来,包括nn.parallel.DistributedDataParallel(torch库里的类)和Trainer(torch4keras里的类),Trainer把device定义成方法并加了@Property装饰器,而在DistributedDataParallel又会对device再进行初始化,于是就会报错了
能提供下bert4torch版本,以及torch4keras版本吗,我刚刚用你的代码也能正常跑起来,我看下是不是版本的问题
我们发现问题在于torch4keras的BaseModelDDP从多个父类继承过来,包括nn.parallel.DistributedDataParallel(torch库里的类)和Trainer(torch4keras里的类),Trainer把device定义成方法并加了@Property装饰器,而在DistributedDataParallel又会对device再进行初始化,于是就会报错了
能提供下bert4torch版本,以及torch4keras版本吗,我刚刚用你的代码也能正常跑起来,我看下是不是版本的问题
目前的版本bert4torch是0.3.2,torch4keras是0.1.1, torch是2.0.1(之前还测试过bert4torch 0.3.1, 0.3.1.post2都有相同的问题)。我的代码跑之前要export DDP_ON=1才是ddp版本。
好的,刚又看了下,好像是我这边的问题,我具体看一下,这两天争取更新掉
@zhouyiyuan-mt @jjRen-xd 原来的代码的确有问题,可以使用git上最新的torch4keras测试一下,我刚刚测试后是可行的,后续我会发个pip版本出来
好的,感谢🙏
最新pip版0.3.3已经修复了,可以直接pip install bert4torch==0.3.3
安装
感谢🙏
提问时请尽可能提供如下信息:
基本信息
核心代码
输出信息
自我尝试
尝试了不同的bert4torch版本和torch版本,同样的报错