issues
search
WoosukKwon
/
retraining-free-pruning
[NeurIPS 2022] A Fast Post-Training Pruning Framework for Transformers
https://arxiv.org/abs/2204.09656
173
stars
27
forks
source link
GLUE & SQuAD Metadata
#2
Closed
WoosukKwon
closed
2 years ago
WoosukKwon
commented
3 years ago
GLUE Benchmark Metadata
Task
MNLI
QQP
QNLI
SST-2
CoLA
STS-B
MRPC
RTE
Train set size
393K
364K
105K
67K
8.5K
7K
3.7K
2.5K
Dev set size
20K
40K
5.4K
0.8K
1K
1.5K
0.4K
0.3K
Test set size
20K
391K
5.4K
1.8K
1K
1.4K
1.7K
3K
Med. sequence length (train)
38
28
48
11
24
54
57
Med. sequence length (dev)
37
28
45
25
29
54
54
SQuAD Benchmark Metadata
Task
SQuAD V1.1
SQuAD 2.0
GLUE dev set Evaluation time (in sec)
Task
MNLI
QQP
QNLI
SST-2
CoLA
STS-B
MRPC
RTE
V100 (FP32, batch 128)
24.39
76.39
14.43
1.41
2.31
1.09
SQuAD Evaluation time (in sec)
Task
SQuAD V1.1
SQuAD 2.0
V100 (FP32, batch 128)
110.11
115.59
GLUE Benchmark Metadata
SQuAD Benchmark Metadata
GLUE dev set Evaluation time (in sec)
SQuAD Evaluation time (in sec)