C:\ProgramData\Anaconda3\python.exe D:/MonitorX/MyGitHub/Face-Aging-CAAE/main.py
{'dataset': 'UTKFace',
'epoch': 5,
'is_train': True,
'savedir': 'save',
'testdir': 'None'}
2018-01-13 18:49:56.297239: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2018-01-13 18:49:56.297443: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2018-01-13 18:49:56.297629: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2018-01-13 18:49:56.297817: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2018-01-13 18:49:56.298002: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2018-01-13 18:49:56.298193: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-01-13 18:49:56.298381: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-01-13 18:49:56.298569: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
Traceback (most recent call last):
File "D:/MonitorX/MyGitHub/Face-Aging-CAAE/main.py", line 43, in
tf.app.run()
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\platform\app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "D:/MonitorX/MyGitHub/Face-Aging-CAAE/main.py", line 32, in main
num_epochs=FLAGS.epoch, # number of epochs
File "D:\MonitorX\MyGitHub\Face-Aging-CAAE\FaceAging.py", line 229, in train
var_list=self.E_variables + self.G_variables
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py", line 325, in minimize
name=name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py", line 446, in apply_gradients
self._create_slots([_get_variable_for(v) for v in var_list])
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\adam.py", line 128, in _create_slots
self._zeros_slot(v, "m", self._name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py", line 766, in _zeros_slot
named_slots[_var_key(var)] = slot_creator.create_zeros_slot(var, op_name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\slot_creator.py", line 174, in create_zeros_slot
colocate_with_primary=colocate_with_primary)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\slot_creator.py", line 146, in create_slot_with_initializer
dtype)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\slot_creator.py", line 66, in _create_slot_var
validate_shape=validate_shape)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 1065, in get_variable
use_resource=use_resource, custom_getter=custom_getter)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 962, in get_variable
use_resource=use_resource, custom_getter=custom_getter)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 367, in get_variable
validate_shape=validate_shape, use_resource=use_resource)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 352, in _true_getter
use_resource=use_resource)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 682, in _get_single_variable
"VarScope?" % name)
ValueError: Variable E_conv0/w/Adam/ does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?
C:\ProgramData\Anaconda3\python.exe D:/MonitorX/MyGitHub/Face-Aging-CAAE/main.py {'dataset': 'UTKFace', 'epoch': 5, 'is_train': True, 'savedir': 'save', 'testdir': 'None'} 2018-01-13 18:49:56.297239: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations. 2018-01-13 18:49:56.297443: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations. 2018-01-13 18:49:56.297629: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations. 2018-01-13 18:49:56.297817: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. 2018-01-13 18:49:56.298002: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. 2018-01-13 18:49:56.298193: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-01-13 18:49:56.298381: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 2018-01-13 18:49:56.298569: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
init var name: "init" op: "NoOp" input: "^E_conv0/w/Assign" input: "^E_conv0/b/Assign" input: "^E_conv1/w/Assign" input: "^E_conv1/b/Assign" input: "^E_conv2/w/Assign" input: "^E_conv2/b/Assign" input: "^E_conv3/w/Assign" input: "^E_conv3/b/Assign" input: "^E_conv4/w/Assign" input: "^E_conv4/b/Assign" input: "^E_fc/w/Assign" input: "^E_fc/b/Assign" input: "^G_fc/w/Assign" input: "^G_fc/b/Assign" input: "^G_deconv0/w/Assign" input: "^G_deconv0/b/Assign" input: "^G_deconv1/w/Assign" input: "^G_deconv1/b/Assign" input: "^G_deconv2/w/Assign" input: "^G_deconv2/b/Assign" input: "^G_deconv3/w/Assign" input: "^G_deconv3/b/Assign" input: "^G_deconv4/w/Assign" input: "^G_deconv4/b/Assign" input: "^G_deconv5/w/Assign" input: "^G_deconv5/b/Assign" input: "^G_deconv6/w/Assign" input: "^G_deconv6/b/Assign" input: "^D_z_fc0/w/Assign" input: "^D_z_fc0/b/Assign" input: "^D_z_bn0/beta/Assign" input: "^D_z_bn0/moving_mean/Assign" input: "^D_z_bn0/moving_variance/Assign" input: "^D_z_fc1/w/Assign" input: "^D_z_fc1/b/Assign" input: "^D_z_bn1/beta/Assign" input: "^D_z_bn1/moving_mean/Assign" input: "^D_z_bn1/moving_variance/Assign" input: "^D_z_fc2/w/Assign" input: "^D_z_fc2/b/Assign" input: "^D_z_bn2/beta/Assign" input: "^D_z_bn2/moving_mean/Assign" input: "^D_z_bn2/moving_variance/Assign" input: "^D_z_fc3/w/Assign" input: "^D_z_fc3/b/Assign" input: "^D_img_conv0/w/Assign" input: "^D_img_conv0/b/Assign" input: "^D_img_bn0/beta/Assign" input: "^D_img_bn0/moving_mean/Assign" input: "^D_img_bn0/moving_variance/Assign" input: "^D_img_conv1/w/Assign" input: "^D_img_conv1/b/Assign" input: "^D_img_bn1/beta/Assign" input: "^D_img_bn1/moving_mean/Assign" input: "^D_img_bn1/moving_variance/Assign" input: "^D_img_conv2/w/Assign" input: "^D_img_conv2/b/Assign" input: "^D_img_bn2/beta/Assign" input: "^D_img_bn2/moving_mean/Assign" input: "^D_img_bn2/moving_variance/Assign" input: "^D_img_conv3/w/Assign" input: "^D_img_conv3/b/Assign" input: "^D_img_bn3/beta/Assign" input: "^D_img_bn3/moving_mean/Assign" input: "^D_img_bn3/moving_variance/Assign" input: "^D_img_fc1/w/Assign" input: "^D_img_fc1/b/Assign" input: "^D_img_fc2/w/Assign" input: "^D_img_fc2/b/Assign" input: "^global_step/Assign"
Traceback (most recent call last): File "D:/MonitorX/MyGitHub/Face-Aging-CAAE/main.py", line 43, in
tf.app.run()
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\platform\app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "D:/MonitorX/MyGitHub/Face-Aging-CAAE/main.py", line 32, in main
num_epochs=FLAGS.epoch, # number of epochs
File "D:\MonitorX\MyGitHub\Face-Aging-CAAE\FaceAging.py", line 229, in train
var_list=self.E_variables + self.G_variables
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py", line 325, in minimize
name=name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py", line 446, in apply_gradients
self._create_slots([_get_variable_for(v) for v in var_list])
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\adam.py", line 128, in _create_slots
self._zeros_slot(v, "m", self._name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py", line 766, in _zeros_slot
named_slots[_var_key(var)] = slot_creator.create_zeros_slot(var, op_name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\slot_creator.py", line 174, in create_zeros_slot
colocate_with_primary=colocate_with_primary)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\slot_creator.py", line 146, in create_slot_with_initializer
dtype)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\training\slot_creator.py", line 66, in _create_slot_var
validate_shape=validate_shape)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 1065, in get_variable
use_resource=use_resource, custom_getter=custom_getter)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 962, in get_variable
use_resource=use_resource, custom_getter=custom_getter)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 367, in get_variable
validate_shape=validate_shape, use_resource=use_resource)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 352, in _true_getter
use_resource=use_resource)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 682, in _get_single_variable
"VarScope?" % name)
ValueError: Variable E_conv0/w/Adam/ does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?
Process finished with exit code 1