We use expected rows(5000000) and fpp(0.01) in bloom filter, the writer results are as follows:
Records
Value Data Size
Without Bloom Filter(MS)
With Bloom Filter(MS)
Relative
100000
0B
6
9
1.5
100000
64B
11
13
1.181818182
100000
500B
37
34
0.918918919
100000
1000B
57
58
1.01754386
100000
2000B
88
95
1.079545455
1000000
0B
32
64
2
1000000
64B
74
114
1.540540541
1000000
500B
253
310
1.225296443
1000000
1000B
384
440
1.145833333
1000000
2000B
534
625
1.170411985
5000000
0B
164
327
1.993902439
5000000
64B
356
511
1.435393258
5000000
500B
1072
1197
1.116604478
5000000
1000B
1921
2338
1.21707444
5000000
2000B
3163
3480
1.100221309
10000000
0B
344
733
2.130813953
10000000
64B
659
1220
1.851289833
10000000
500B
2815
2991
1.062522202
10000000
1000B
4914
5407
1.1003256
10000000
2000B
8646
9170
1.060606061
15000000
0B
517
1028
1.988394584
15000000
64B
1169
1718
1.469632164
15000000
500B
5435
5170
0.95124195
15000000
1000B
9962
10255
1.029411765
15000000
2000B
16203
18573
1.146269209
The reader results which query data based on keys that are definitely stored are as follows and it indicates that the bloom filter basically does not cause performance degradation.
Records
Value Data Size
Without Bloom Filter(MS)
With Bloom Filter(MS)
Relative
100000
0B
799
807
1.010012516
100000
64B
205
193
0.941463415
100000
500B
171
140
0.81871345
100000
1000B
168
187
1.113095238
100000
2000B
170
173
1.017647059
1000000
0B
791
803
1.01517067
1000000
64B
221
211
0.954751131
1000000
500B
145
163
1.124137931
1000000
1000B
152
181
1.190789474
1000000
2000B
162
164
1.012345679
5000000
0B
789
778
0.986058302
5000000
64B
221
224
1.013574661
5000000
500B
175
161
0.92
5000000
1000B
178
181
1.016853933
5000000
2000B
186
186
1
10000000
0B
776
797
1.027061856
10000000
64B
191
201
1.052356021
10000000
500B
142
151
1.063380282
10000000
1000B
142
159
1.11971831
10000000
2000B
159
166
1.044025157
15000000
0B
820
800
0.975609756
15000000
64B
260
209
0.803846154
15000000
500B
139
151
1.086330935
15000000
1000B
149
155
1.040268456
15000000
2000B
157
164
1.044585987
The reader results which query data based on keys that are definitely not stored are as follows and it indicates that the bloom filter can greatly improve performance.
Purpose
Linked issue: close #xxx
We use expected rows(5000000) and fpp(0.01) in bloom filter, the writer results are as follows:
The reader results which query data based on keys that are definitely not stored are as follows and it indicates that the bloom filter can greatly improve performance.