Implementation of LaneNet Keras based on the paper FusionNet:Aerial LaneNet: Lane Marking Semantic Segmentation in Aerial Imagery using Wavelet-Enhanced Cost-sensitive Symmetric Fully Convolutional Neural Networks
usage: train.py [-h] [--num_epochs NUM_EPOCHS] [--save SAVE] [--gpu GPU]
[--checkpoint CHECKPOINT] [--class_balancing CLASS_BALANCING]
[--continue_training CONTINUE_TRAINING] [--dataset DATASET]
[--batch_size BATCH_SIZE] [--one_hot_label ONE_HOT_LABEL]
[--data_aug DATA_AUG] [--change CHANGE] [--height HEIGHT]
[--width WIDTH] [--channels CHANNELS] [--model MODEL]
optional arguments:
-h, --help show this help message and exit
--num_epochs NUM_EPOCHS
Number of epochs to train for
--save SAVE Interval for saving weights
--gpu GPU Choose GPU device to be used
--checkpoint CHECKPOINT
Checkpoint folder.
--class_balancing CLASS_BALANCING
Whether to use median frequency class weights to
balance the classes in the loss
--continue_training CONTINUE_TRAINING
Whether to continue training from a checkpoint
--dataset DATASET Dataset you are using.
--batch_size BATCH_SIZE
Number of images in each batch
--one_hot_label ONE_HOT_LABEL
One hot label encoding
--data_aug DATA_AUG Use or not augmentation
--change CHANGE Double image 256, 512
--height HEIGHT Height of input image to network
--width WIDTH Width of input image to network
--channels CHANNELS Number of channels of input image to network
--model MODEL The model you are using. Currently supports:
fusionNet, fusionNet2, unet, fusionnet_atten, temp,
vgg_unet, fusionnet_ppl