Traceback (most recent call last):
File "train.py", line 366, in
fp_16=opt.fp_16,
File "train.py", line 200, in train
lbboxes,
File "R:\anaconda\envs\YOLOv4-PyTorch\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, *kwargs)
File "R:\yolov4\model\loss\yolo_loss.py", line 65, in forward
p[0], p_d[0], label_sbbox, sbboxes, strides[0]
File "R:\yolov4\model\loss\yolo_loss.py", line 151, in __cal_loss_per_layer
label_obj_mask BCE(input=p_cls, target=label_cls) label_mix
File "R:\anaconda\envs\YOLOv4-PyTorch\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(input, **kwargs)
File "R:\anaconda\envs\YOLOv4-PyTorch\lib\site-packages\torch\nn\modules\loss.py", line 632, in forward
reduction=self.reduction)
File "R:\anaconda\envs\YOLOv4-PyTorch\lib\site-packages\torch\nn\functional.py", line 2580, in binary_cross_entropy_with_logits
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
ValueError: Target size (torch.Size([2, 52, 52, 3, 12])) must be the same as input size (torch.Size([2, 52, 52, 3, 10]))
Traceback (most recent call last): File "train.py", line 366, in
fp_16=opt.fp_16,
File "train.py", line 200, in train
lbboxes,
File "R:\anaconda\envs\YOLOv4-PyTorch\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(*input, *kwargs)
File "R:\yolov4\model\loss\yolo_loss.py", line 65, in forward
p[0], p_d[0], label_sbbox, sbboxes, strides[0]
File "R:\yolov4\model\loss\yolo_loss.py", line 151, in __cal_loss_per_layer
label_obj_mask BCE(input=p_cls, target=label_cls) label_mix
File "R:\anaconda\envs\YOLOv4-PyTorch\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
result = self.forward(input, **kwargs)
File "R:\anaconda\envs\YOLOv4-PyTorch\lib\site-packages\torch\nn\modules\loss.py", line 632, in forward
reduction=self.reduction)
File "R:\anaconda\envs\YOLOv4-PyTorch\lib\site-packages\torch\nn\functional.py", line 2580, in binary_cross_entropy_with_logits
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
ValueError: Target size (torch.Size([2, 52, 52, 3, 12])) must be the same as input size (torch.Size([2, 52, 52, 3, 10]))