ashishpapanai / stockDL

A financial deep learning library for stocks price prediction and comparison with traditional investment strategies. The Library is based on LSTM-Neural Networks and Conv1D + LSTM Neural Networks. Investments are subject to market risks, The AUTHOR HOLDS NO RESPONSIBILITY for any financial loss.
https://stockdl.readthedocs.io/en/latest/
Other
33 stars 12 forks source link
deep-learning finace financial-analysis lstm pip pip-package python3 stocks stocks-api stocks-predictor

DOI PyPI version Downloads Documentation Status

Stock (1)

stockDL: A Deep Learning library for stocks price predictions and calculations

Features

How to install:

For using as a library:

pip install stockDL

import the package as:

import stockDL

to get the results in command line:

from stockDL import main
main.Main('stock_ticker')

Stock tickers can be obtained here.

For using as a template or to make contributions to the repository:

Clone from GitHub: https://github.com/ashishpapanai/stockDL

git clone https://github.com/ashishpapanai/stockDL

Create a virtual environment using pip for Linux and macOS:

python3 -m pip install --user virtualenv
# Create a virtual environment
python3 -m venv env
# Activate the virtual environment
source env/bin/activate

Create a virtual environment using pip for Windows:

py -m pip install --user virtualenv
# Create a virtual environment
py -m venv env
# Activate the virtual environment
.\env\Scripts\activate

Installing dependencies:

pip install -r requirements.txt

Running the package:

python -m stockDL

Dependencies:

  1. Yahoo Finance (yfinance): https://pypi.org/project/yfinance/
  2. Keras: https://pypi.org/project/Keras/
  3. Pandas: https://pypi.org/project/pandas/
  4. Numpy: https://pypi.org/project/numpy/
  5. Matplotlib: https://pypi.org/project/matplotlib/
  6. TensorFlow: https://pypi.org/project/tensorflow/

Install all dependencies in a go: pip install -r requirements.txt If it fails: Install all dependencies on by one [if you are cloning the repository]. for pip installation, dependencies are satisfied automatically.

License:

MIT License © Ashish Papanai 2021

Documentation:

Read the documentation here

Getting Help:

Post your questions in the discussion section of the GitHub repository or mail the author [ashishpapanai00@gmail.com]

Contributing to stockDL:

Contributions are not restricted to bug fixes or enhancements. We welcome contributions including any grammatical or typo error anywhere in the repository.

You can contribute by reviewing the PRs, requesting new and useful features, reporting a bug in the repository or helping the community in the discussion section.

Copyright © Ashish Papanai 2021