Quantized tflite models for ailia TFLite Runtime
ailia TFLite Runtime is a TensorFlow Lite compatible inference engine. Written in C99, it supports inference in Non-OS and RTOS. It also supports high-speed inference using Intel MKL on a PC. In the Android environment, we provide a Unity Package, which also supports NPU inference using NNAPI.
Run the following command. The Python version is compatible with Windows, macOS, and Linux. It is also planned to support Arm Linux in the future.
pip3 install ailia_tflite
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
u2net | U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection | TensorFlow | 1.1.0 |
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
Midas | Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer | Pytorch | 1.1.7 |
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
BlazeFace | PINTO_model_zoo | TensorFlow | 1.0.0 |
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
Face Mesh | PINTO_model_zoo | TensorFlow | 1.0.0 | |
face_classification | Real-time face detection and emotion/gender classification | TensorFlow | 1.1.1 |
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
Blaze Hand | PINTO_model_zoo | TensorFlow | 1.0.0 |
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
MobileNet | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications | Keras | 1.0.0 | |
MobileNetV2 | MobileNetV2: Inverted Residuals and Linear Bottlenecks | Keras | 1.0.0 | |
ResNet50 | tf.keras.applications.resnet50.ResNet50 | Keras | 1.0.0 | |
EfficientnetLite | efficientnet-lite-keras | Keras | 1.0.0 | |
SqueezeNet | keras_squeezenet2 | Keras | 1.0.0 | |
vgg16 | VGG16 - Torchvision | Pytorch | 1.1.7 for int8, 1.1.9 for float | |
googlenet | GOOGLENET | Pytorch | 1.1.10 |
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
DeepLabv3+ | PINTO_model_zoo | TensorFlow | 1.0.0 | |
HRNet-Semantic-Segmentation | HRNet-Semantic-Segmentation | TensorFlow | 1.1.0 |
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
YOLOv3 tiny | tensorflow-yolov4-tflite | TensorFlow | 1.0.0 | |
YOLOX | YOLOX | Pytorch | 1.1.1 | |
EfficientDetLite | PINTO_model_zoo | TensorFlow | 1.1.3 |
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
pose_resnet | Simple Baselines for Human Pose Estimation and Tracking | Pytorch | 1.1.7 for int8, 1.1.9 for float |
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
ESPCN | Image Super-Resolution using an Efficient Sub-Pixel CNN | TensorFlow | 1.1.0 | |
srresnet | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network | Pytorch | 1.1.10 |
You can benchmark with the -b option. You can use the official TensorFlow Lite with the --tflite option.
You can use cui launchar.
python3 launchar.py