We present the implementation of the AAAI 2023 paper :
Sustaining Fairness via Incremental Learning,
Somnath Basu Roy Chowdhury and Snigdha Chaturvedi,
UNC Chapel Hill
We prepare the Biased MNIST dataset using src/mnist_data_create.py
.
Data for the Biographies dataset is obtained from https://github.com/microsoft/biosbias.
To access the exact data in our experiments: Biased MNIST (is available here) and Biographies dataset (available here).
Python version: python 3.8.5
Dependencies: To install the dependencies using conda, please follow the steps below:
conda create -n fairl python=3.8.5
source activate fairl
pip install -r requirements.txt
Running the main experiments on Biographies dataset.
cd src/fairl/
python bios.py \
--device cuda:0 \
--num_target_class 28 \
--num_protected_class 2 \
--exemplar_selection prototype
Running the main experiments in various configurations of the Biased MNIST dataset.
cd src/fairl/
python mnist.py \
--device cuda:0 \
--num_target_class 10 \
--num_protected_class 10 \
--dataset .8 \
--exemplar_selection prototype
@article{fairl,
title = {Sustaining Fairness via Incremental Learning},
author = {Basu Roy Chowdhury, Somnath and Chaturvedi, Snigdha},
booktitle = {Proceedings of the AAAI Conference on Artificial Intelligence},
volume = {37},
number = {1},
year = {2023}
}