brentyi / jaxlie

Rigid transforms + Lie groups in JAX
MIT License
234 stars 15 forks source link
computer-vision geometry jax lie-groups robotics

jaxlie

build mypy lint codecov pypi_dowlnoads

[ API reference ] [ PyPI ]

jaxlie is a library containing implementations of Lie groups commonly used for rigid body transformations, targeted at computer vision & robotics applications written in JAX. Heavily inspired by the C++ library Sophus.

We implement Lie groups as high-level (data)classes:

Group Description Parameterization
jaxlie.SO2 Rotations in 2D. (real, imaginary): unit complex (∈ S1)
jaxlie.SE2 Proper rigid transforms in 2D. (real, imaginary, x, y): unit complex & translation
jaxlie.SO3 Rotations in 3D. (qw, qx, qy, qz): wxyz quaternion (∈ S3)
jaxlie.SE3 Proper rigid transforms in 3D. (qw, qx, qy, qz, x, y, z): wxyz quaternion & translation

Where each group supports:

We also implement various common utilities for things like uniform random sampling (sample_uniform()) and converting from/to Euler angles (in the SO3 class).


Install (Python >=3.7)

# Python 3.6 releases also exist, but are no longer being updated.
pip install jaxlie

Misc

jaxlie was originally written when I was learning about Lie groups for our IROS 2021 paper (link):

@inproceedings{yi2021iros,
    author={Brent Yi and Michelle Lee and Alina Kloss and Roberto Mart\'in-Mart\'in and Jeannette Bohg},
    title = {Differentiable Factor Graph Optimization for Learning Smoothers},
    year = 2021,
    BOOKTITLE = {2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}
}