Open carloscn opened 1 year ago
pub fn max_ascending_sum(nums: Vec<i32>) -> i32
{
if nums.len() < 1 {
return 0;
}
let mut max_sum:i32 = i32::MIN;
let mut sum:i32 = 0;
for i in 0..nums.len() {
if (i < nums.len() - 1) && (nums[i + 1] - nums[i] > 0) {
sum += nums[i];
} else {
sum += nums[i];
max_sum = max_sum.max(sum);
sum = 0;
}
}
return max_sum;
}
Description
Given an array of positive integers nums, return the maximum possible sum of an ascending subarray in nums.
A subarray is defined as a contiguous sequence of numbers in an array.
A subarray [numsl, numsl+1, ..., numsr-1, numsr] is ascending if for all i where l <= i < r, numsi < numsi+1. Note that a subarray of size 1 is ascending.
Example 1:
Input: nums = [10,20,30,5,10,50] Output: 65 Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.
Example 2:
Input: nums = [10,20,30,40,50] Output: 150 Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.
Example 3:
Input: nums = [12,17,15,13,10,11,12] Output: 33 Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.
Constraints:
1 <= nums.length <= 100 1 <= nums[i] <= 100