chengxuxin / expressive-humanoid

[RSS 2024]: Expressive Whole-Body Control for Humanoid Robots
https://expressive-humanoid.github.io/
Other
199 stars 19 forks source link
human-motion imitation-learning reinforcement-learning sim-to-real

Expressive Whole-Body Control for
Humanoid Robots

Xuxin Cheng* · Yandong Ji* · Junming Chen
Ge Yang · Xiaolong Wang

Website | arXiv | Video | Summary

Installation

conda create -n humanoid python=3.8
conda activate humanoid
cd
pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
git clone git@github.com:chengxuxin/expressive_humanoid.git
cd expressive_humanoid
# Download the Isaac Gym binaries from https://developer.nvidia.com/isaac-gym 
cd isaacgym/python && pip install -e .
cd ~/expressive_humanoid/rsl_rl && pip install -e .
cd ~/expressive_humanoid/legged_gym && pip install -e .
pip install "numpy<1.24" pydelatin wandb tqdm opencv-python ipdb pyfqmr flask dill gdown

Next install fbx. Follow the instructions here.

Prepare dataset

  1. Download from here and extract the zip file to ASE/ase/poselib/data/cmu_fbx_all that contains all .fbx files.

  2. Gnerate .yaml file for the motions you want to use.

    cd ASE/ase/poselib
    python parse_cmu_mocap_all.py

    This step is not mandatory because the .yaml file is already generated. But if you want to add more motions, you can use this script to generate the .yaml file.

  3. Import motions

    cd ASE/ase/poselib
    python fbx_importer_all.py

    This will import all motions in CMU Mocap dataset into ASE/ase/poselib/data/npy.

  4. Retarget motions

    cd ASE/ase/poselib
    mkdir pkl retarget_npy
    python retarget_motion_h1_all.py

    This will retarget all motions in ASE/ase/poselib/data/npy to ASE/ase/poselib/data/retarget_npy.

  5. Gnerate keybody positions

This step will require running simulation to extract more precise key body positions.

cd legged_gym/legged_gym/scripts
python train.py debug --task h1_view --motion_name motions_debug.yaml --debug

Train for 1 iteration and kill the program to have a dummy model to load.

python play.py debug --task h1_view --motion_name motions_autogen_all.yaml

It is recommended to use motions_autogen_all.yaml at the first time, so that later if you have a subset it is not neccessary to regenerate keybody positions. This will generate keybody positions to ASE/ase/poselib/data/retarget_npy. Set wandb asset:

Usage

To train a new policy

python train.py xxx-xx-some_descriptions_of_run --device cuda:0 --entity WANDB_ENTITY

xxx-xx is usually an id like 000-01. motion_type and motion_name are defined in legged_gym/legged_gym/envs/h1/h1_mimic_config.py. They can be also given as arguments. Can set default WANDB_ENTITY in legged_gym/legged_gym/utils/helpers.py.

To play a policy

python play.py xxx-xx

No need to write the full experimentt id. The parser will auto match runs with first 6 strings (xxx-xx). So better make sure you don't reuse xxx-xx. Delay is added after 8k iters. If you want to play after 8k, add --delay.

To play with example pretrained models

python play.py 060-40 --delay --motion_name motions_debug.yaml

Try to press + or - to see different motions. The motion name will be printed on terminal. motions_debug.yaml is a small subset of motions for debugging and contains some representative motions.

  1. Save models for deployment:
    python save_jit.py --exptid xxx-xx

    This will save the models in legged_gym/logs/parkour_new/xxx-xx/traced/.

Viewer Usage

Can be used in both IsaacGym and web viewer.

IsaacGym viewer specific

Arguments

For more arguments, refer legged_gym/utils/helpers.py.

Acknowledgement

We derive the retargetting code from ASE.