Open skkanlei opened 9 months ago
No. you are wrong. I confirmed I've got the same package versions as yours and run_cicero
works.
My R is 4.1.2.
[1] cicero_1.3.9 Gviz_1.38.4 monocle3_1.3.4
[4] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0 GenomicRanges_1.46.1
[7] GenomeInfoDb_1.30.1 IRanges_2.28.0 S4Vectors_0.32.3
[10] MatrixGenerics_1.6.0 matrixStats_0.63.0 Biobase_2.54.0
[13] BiocGenerics_0.40.0 Signac_1.10.0 SeuratObject_4.1.3
[16] Seurat_4.3.0
I suggest you go through the original tutorial https://cole-trapnell-lab.github.io/cicero-release/docs_m3/#constructing-cis-regulatory-networks make sure it runs. I suspected the way you set the 'toy' data, sample_genome$V2[1] <- 100000
, gives the problem. The range you specified may be too short. It could also be that the demo data does not have enough peaks in chr18 you specified.
No. you are wrong. I confirmed I've got the same package versions as yours and
run_cicero
works.My R is 4.1.2.
[1] cicero_1.3.9 Gviz_1.38.4 monocle3_1.3.4 [4] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0 GenomicRanges_1.46.1 [7] GenomeInfoDb_1.30.1 IRanges_2.28.0 S4Vectors_0.32.3 [10] MatrixGenerics_1.6.0 matrixStats_0.63.0 Biobase_2.54.0 [13] BiocGenerics_0.40.0 Signac_1.10.0 SeuratObject_4.1.3 [16] Seurat_4.3.0
I suggest you go through the original tutorial https://cole-trapnell-lab.github.io/cicero-release/docs_m3/#constructing-cis-regulatory-networks make sure it runs. I suspected the way you set the 'toy' data,
sample_genome$V2[1] <- 100000
, gives the problem. The range you specified may be too short. It could also be that the demo data does not have enough peaks in chr18 you specified.
Thank you so much for your reply! I have changed my code according your suggestion, but still get the same error! My code is
temp <- textConnection(readLines(gzcon(url("http://staff.washington.edu/hpliner/data/kidney_data.txt.gz"))))
cicero_data <- read.table(temp) input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
input_cds <- detect_genes(input_cds) input_cds <- estimate_size_factors(input_cds) input_cds <- preprocess_cds(input_cds, method = "LSI") save(input_cds, file = "input_cds.rdata") input_cds <- reduce_dimension(input_cds, reduction_method = 'UMAP', preprocess_method = "LSI")
plot_cells(input_cds) umap_coords <- reducedDims(input_cds)$UMAP cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = umap_coords)
data("mouse.mm9.genome")
sample_genome <- subset(mouse.mm9.genome, V1 == "chr2") sample_genome$V2[1] <- 1000000000
conns <- run_cicero(cicero_cds, sample_genome, sample_num = 100) head(conns)
R is 4.3.2
other attached packages: [1] SeuratWrappers_0.2.0 cicero_1.3.9
[3] Gviz_1.46.1 monocle3_1.3.5
[5] SingleCellExperiment_1.24.0 TFBSTools_1.40.0
[7] JASPAR2020_0.99.10 ggsci_3.0.0
[9] paletteer_1.5.0 RColorBrewer_1.1-3
[11] biovizBase_1.50.0 AnnotationHub_3.10.0
[13] BiocFileCache_2.10.1 dbplyr_2.4.0
[15] EnsDb.Hsapiens.v86_2.99.0 ensembldb_2.26.0
[17] AnnotationFilter_1.26.0 GenomicFeatures_1.54.1
[19] AnnotationDbi_1.64.1 Signac_1.11.0
[21] dplyr_1.1.4 patchwork_1.1.3
[23] SeuratObject_4.1.3 Seurat_4.3.0
[25] ggplot2_3.4.4 Matrix_1.6-1
[27] SummarizedExperiment_1.32.0 Biobase_2.62.0
[29] MatrixGenerics_1.14.0 matrixStats_1.2.0
[31] motifmatchr_1.24.0 chromVAR_1.24.0
[33] BiocParallel_1.36.0 BSgenome.Btaurus.UCSC.bosTau9_1.4.2 [35] BSgenome_1.70.1 rtracklayer_1.62.0
[37] BiocIO_1.12.0 Biostrings_2.70.1
[39] XVector_0.42.0 GenomicRanges_1.54.1
[41] GenomeInfoDb_1.38.4 IRanges_2.36.0
[43] S4Vectors_0.40.2 BiocGenerics_0.48.1
No. you are wrong. I confirmed I've got the same package versions as yours and
run_cicero
works.My R is 4.1.2.
[1] cicero_1.3.9 Gviz_1.38.4 monocle3_1.3.4 [4] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0 GenomicRanges_1.46.1 [7] GenomeInfoDb_1.30.1 IRanges_2.28.0 S4Vectors_0.32.3 [10] MatrixGenerics_1.6.0 matrixStats_0.63.0 Biobase_2.54.0 [13] BiocGenerics_0.40.0 Signac_1.10.0 SeuratObject_4.1.3 [16] Seurat_4.3.0
I suggest you go through the original tutorial https://cole-trapnell-lab.github.io/cicero-release/docs_m3/#constructing-cis-regulatory-networks make sure it runs. I suspected the way you set the 'toy' data,
sample_genome$V2[1] <- 100000
, gives the problem. The range you specified may be too short. It could also be that the demo data does not have enough peaks in chr18 you specified.
So sorry to trouble again! I run the https://github.com/cole-trapnell-lab/cicero-release/blob/monocle3/R/runCicero.R and find that as soon as I ran the following code, I keep getting "The previous R session was abnormally terminated due to an unexpected crash".
while(sample_num > distance_parameters_calced & it < max_sample_windows) { it <- it + 1 win <- sample(seq_len(length(grs)), 1) GL <- "Error" win_range <- get_genomic_range(grs, cds, win)
if (nrow(exprs(win_range))<=1) { next() } if (nrow(exprs(win_range)) > max_elements) { next() } dist_matrix <- calc_dist_matrix(win_range) distance_parameter <- find_distance_parameter(dist_matrix, win_range, maxit = maxit, null_rho = 0, s, distance_constraint = distance_constraint, distance_parameter_convergence = distance_parameter_convergence) if (!is(distance_parameter, "numeric")) next() distance_parameters = c(distance_parameters, distance_parameter) distance_parameters_calced <- distance_parameters_calced + 1
}
If you'd like, can you share the code you run?Thank you very much!
Apologies for the long delay. Is this still an issue?
While running code "run_cicero", I keep getting "The previous R session was abnormally terminated due to an unexpected crash"
I just run the test code!!
library(cicero) library(Signac) library(Seurat) library(SeuratWrappers) library(ggplot2) library(patchwork) library(monocle3)
data("cicero_data") data("human.hg19.genome")
sample_genome <- subset(human.hg19.genome, V1 == "chr18") sample_genome$V2[1] <- 100000 input_cds <- make_atac_cds(cicero_data, binarize = TRUE) input_cds <- detect_genes(input_cds) input_cds <- estimate_size_factors(input_cds) input_cds <- preprocess_cds(input_cds, method = "PCA") input_cds <- reduce_dimension(input_cds, max_components = 2, num_dim=6, reduction_method = 'tSNE', norm_method = "none", preprocess_method = 'PCA') cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = reducedDims(input_cds)$tSNE) cons <- run_cicero(cicero_cds, sample_genome, sample_num = 2)
I think this is because of my package version, but I don't know the correct version about cicero and monocle3! cicero_1.3.9 monocle3_1.3.4
Seurat_4.3.0 And I don't want to update my seurat4 to seurat5.