Closed bardram closed 1 year ago
The statistical features:
could not be implemented (they assume some sort of probabilistic distribution).
Peak detection could be implemented, by using this Robust peak detection algorithm (using z-scores).
Published as 1.3.4.
Accelerometer features are now like this:
{
"sensorStartTime": 1697800468891780,
"sensorEndTime": 1697800478903568,
"data": {
"__type": "dk.cachet.carp.accelerationfeatures",
"count": 55,
"xMean": -0.002724063667384061,
"yMean": -0.002637693015011874,
"zMean": -0.16934890747070314,
"xStd": 0.013855562205479371,
"yStd": 0.01849891120176733,
"zStd": 0.011855636444812601,
"xAad": 0.011472705031229444,
"yAad": 0.013146298109007278,
"zAad": 0.008665431629527699,
"xMin": -0.03441151976585388,
"yMin": -0.06160842627286911,
"zMin": -0.20050811767578125,
"xMax": 0.022999465465545654,
"yMax": 0.04248298704624176,
"zMax": -0.12859725952148438,
"xMaxMinDiff": 0.057410985231399536,
"yMaxMinDiff": 0.10409141331911087,
"zMaxMinDiff": 0.07191085815429688,
"xMedian": -0.0013580620288848877,
"yMedian": -0.0037148892879486084,
"zMedian": -0.16947650909423828,
"xMad": 0.010873883962631226,
"yMad": 0.010325059294700623,
"zMad": 0.004851341247558594,
"xIqr": 0.019643381237983704,
"yIqr": 0.020682185888290405,
...
}
To further address #336, we want to extend the average accelerometer measure (PR #342, #341) to contain more features.
Using these articles as inspiration: