Closed bigbigdinosaur closed 5 years ago
Hmm that's an interesting use case. You're correct in that your image size is the issue, but I'm not to sure YOLACT would work for a huge image with 100s of objects anyway. The first thing the network does is resize the image down to 550x550, meaning most of the objects would probably be impossible to see.
If you want to still try training with your very small objects made even smaller, you can simply resize the images like you said and then also scale down the annotations. I recommend creating a script to open your dataset's coco-format annotation file, then in the "annotations" array, there will be a bunch of objects with a field called "segmentation". You'll have to check, but I think that's just going to be a list of points for you. So all you need to do is scale each point in that list down the same amount as you scaled the image down (so if 550x550, multiply the x by 550/5760 and the y by 550/3840), and then do the same for each annotation.
thanks a lot for your reply! i change the size of pictures and the related json annotation files, the memory error seems to be solved but new error occur, which i have no idea of how to solve it the error imformation is as follows:
Traceback (most recent call last):
File "train.py", line 382, in
is it something wrong with two 2080TI? or maybe the config file is not filled correctly?
my config file is as follows, thanks for your kindness!
from backbone import ResNetBackbone, VGGBackbone, ResNetBackboneGN, DarkNetBackbone from math import sqrt import torch
COLORS = ((244, 67, 54), (233, 30, 99), (156, 39, 176), (103, 58, 183), ( 63, 81, 181), ( 33, 150, 243), ( 3, 169, 244), ( 0, 188, 212), ( 0, 150, 136), ( 76, 175, 80), (139, 195, 74), (205, 220, 57), (255, 235, 59), (255, 193, 7), (255, 152, 0), (255, 87, 34), (121, 85, 72), (158, 158, 158), ( 96, 125, 139))
MEANS = (103.94, 116.78, 123.68) STD = (57.38, 57.12, 58.40)
COCO_CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
COCO_LABEL_MAP = { 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 13: 12, 14: 13, 15: 14, 16: 15, 17: 16, 18: 17, 19: 18, 20: 19, 21: 20, 22: 21, 23: 22, 24: 23, 25: 24, 27: 25, 28: 26, 31: 27, 32: 28, 33: 29, 34: 30, 35: 31, 36: 32, 37: 33, 38: 34, 39: 35, 40: 36, 41: 37, 42: 38, 43: 39, 44: 40, 46: 41, 47: 42, 48: 43, 49: 44, 50: 45, 51: 46, 52: 47, 53: 48, 54: 49, 55: 50, 56: 51, 57: 52, 58: 53, 59: 54, 60: 55, 61: 56, 62: 57, 63: 58, 64: 59, 65: 60, 67: 61, 70: 62, 72: 63, 73: 64, 74: 65, 75: 66, 76: 67, 77: 68, 78: 69, 79: 70, 80: 71, 81: 72, 82: 73, 84: 74, 85: 75, 86: 76, 87: 77, 88: 78, 89: 79, 90: 80}
class Config(object): """ Holds the configuration for anything you want it to. To get the currently active config, call get_cfg().
To use, just do cfg.x instead of cfg['x'].
I made this because doing cfg['x'] all the time is dumb.
"""
def __init__(self, config_dict):
for key, val in config_dict.items():
self.__setattr__(key, val)
def copy(self, new_config_dict={}):
"""
Copies this config into a new config object, making
the changes given by new_config_dict.
"""
ret = Config(vars(self))
for key, val in new_config_dict.items():
ret.__setattr__(key, val)
return ret
def replace(self, new_config_dict):
"""
Copies new_config_dict into this config object.
Note: new_config_dict can also be a config object.
"""
if isinstance(new_config_dict, Config):
new_config_dict = vars(new_config_dict)
for key, val in new_config_dict.items():
self.__setattr__(key, val)
def print(self):
for k, v in vars(self).items():
print(k, ' = ', v)
dataset_base = Config({ 'name': 'Base Dataset',
# Training images and annotations
'train_images': './data/coco/images/',
'train_info': 'path_to_annotation_file',
# Validation images and annotations.
'valid_images': './data/coco/images/',
'valid_info': 'path_to_annotation_file',
# Whether or not to load GT. If this is False, eval.py quantitative evaluation won't work.
'has_gt': True,
# A list of names for each of you classes.
'class_names': COCO_CLASSES,
# COCO class ids aren't sequential, so this is a bandage fix. If your ids aren't sequential,
# provide a map from category_id -> index in class_names + 1 (the +1 is there because it's 1-indexed).
# If not specified, this just assumes category ids start at 1 and increase sequentially.
'label_map': None
})
coco2014_dataset = dataset_base.copy({ 'name': 'COCO 2014',
'train_info': './data/coco/annotations/instances_train2014.json',
'valid_info': './data/coco/annotations/instances_val2014.json',
'label_map': COCO_LABEL_MAP
})
coco2017_dataset = dataset_base.copy({ 'name': 'COCO 2017',
'train_info': './data/coco/annotations/instances_train2017.json',
'valid_info': './data/coco/annotations/instances_val2017.json',
'label_map': COCO_LABEL_MAP
})
coco2017_testdev_dataset = dataset_base.copy({ 'name': 'COCO 2017 Test-Dev',
'valid_info': './data/coco/annotations/image_info_test-dev2017.json',
'has_gt': False,
'label_map': COCO_LABEL_MAP
})
my_custom_dataset = dataset_base.copy({ 'name': 'My Dataset',
'train_images': '/home/SENSETIME/kongzelong/labelme/examples/instance_segmentation/data_dataset_coco',
'train_info': '/home/SENSETIME/kongzelong/labelme/examples/instance_segmentation/data_dataset_coco/annotations.json',
'valid_images': '/home/SENSETIME/kongzelong/labelme/examples/instance_segmentation/data_dataset_coco',
'valid_info': '/home/SENSETIME/kongzelong/labelme/examples/instance_segmentation/data_dataset_coco/annotations.json',
'has_gt': False,
'class_names': ('glassInsulator', 'compositeInsulator')
})
resnet_transform = Config({ 'channel_order': 'RGB', 'normalize': True, 'subtract_means': False, 'to_float': False, })
vgg_transform = Config({
# the channel order of vgg_reducedfc.pth is RGB.
'channel_order': 'RGB',
'normalize': False,
'subtract_means': True,
'to_float': False,
})
darknet_transform = Config({ 'channel_order': 'RGB', 'normalize': False, 'subtract_means': False, 'to_float': True, })
backbone_base = Config({ 'name': 'Base Backbone', 'path': 'path/to/pretrained/weights', 'type': object, 'args': tuple(), 'transform': resnet_transform,
'selected_layers': list(),
'pred_scales': list(),
'pred_aspect_ratios': list(),
'use_pixel_scales': False,
'preapply_sqrt': True,
'use_square_anchors': False,
})
resnet101_backbone = backbone_base.copy({ 'name': 'ResNet101', 'path': 'resnet101_reducedfc.pth', 'type': ResNetBackbone, 'args': ([3, 4, 23, 3],), 'transform': resnet_transform,
'selected_layers': list(range(2, 8)),
'pred_scales': [[1]]*6,
'pred_aspect_ratios': [ [[0.66685089, 1.7073535, 0.87508774, 1.16524493, 0.49059086]] ] * 6,
})
resnet101_gn_backbone = backbone_base.copy({ 'name': 'ResNet101_GN', 'path': 'R-101-GN.pkl', 'type': ResNetBackboneGN, 'args': ([3, 4, 23, 3],), 'transform': resnet_transform,
'selected_layers': list(range(2, 8)),
'pred_scales': [[1]]*6,
'pred_aspect_ratios': [ [[0.66685089, 1.7073535, 0.87508774, 1.16524493, 0.49059086]] ] * 6,
})
resnet50_backbone = resnet101_backbone.copy({ 'name': 'ResNet50', 'path': 'resnet50-19c8e357.pth', 'type': ResNetBackbone, 'args': ([3, 4, 6, 3],), 'transform': resnet_transform, })
darknet53_backbone = backbone_base.copy({ 'name': 'DarkNet53', 'path': 'darknet53.pth', 'type': DarkNetBackbone, 'args': ([1, 2, 8, 8, 4],), 'transform': darknet_transform,
'selected_layers': list(range(3, 9)),
'pred_scales': [[3.5, 4.95], [3.6, 4.90], [3.3, 4.02], [2.7, 3.10], [2.1, 2.37], [1.8, 1.92]],
'pred_aspect_ratios': [ [[1, sqrt(2), 1/sqrt(2), sqrt(3), 1/sqrt(3)][:n], [1]] for n in [3, 5, 5, 5, 3, 3] ],
})
vgg16_arch = [[64, 64], [ 'M', 128, 128], [ 'M', 256, 256, 256], [('M', {'kernel_size': 2, 'stride': 2, 'ceil_mode': True}), 512, 512, 512], [ 'M', 512, 512, 512], [('M', {'kernel_size': 3, 'stride': 1, 'padding': 1}), (1024, {'kernel_size': 3, 'padding': 6, 'dilation': 6}), (1024, {'kernel_size': 1})]]
vgg16_backbone = backbone_base.copy({ 'name': 'VGG16', 'path': 'vgg16_reducedfc.pth', 'type': VGGBackbone, 'args': (vgg16_arch, [(256, 2), (128, 2), (128, 1), (128, 1)], [3]), 'transform': vgg_transform,
'selected_layers': [3] + list(range(5, 10)),
'pred_scales': [[5, 4]]*6,
'pred_aspect_ratios': [ [[1], [1, sqrt(2), 1/sqrt(2), sqrt(3), 1/sqrt(3)][:n]] for n in [3, 5, 5, 5, 3, 3] ],
})
mask_type = Config({
# This is denoted as fc-mask in the paper.
# Parameters: mask_size, use_gt_bboxes
'direct': 0,
# Lincomb produces coefficients as the output of each pred module then uses those coefficients
# to linearly combine features from a prototype network to create image-sized masks.
# Parameters:
# - masks_to_train (int): Since we're producing (near) full image masks, it'd take too much
# vram to backprop on every single mask. Thus we select only a subset.
# - mask_proto_src (int): The input layer to the mask prototype generation network. This is an
# index in backbone.layers. Use to use the image itself instead.
# - mask_proto_net (list<tuple>): A list of layers in the mask proto network with the last one
# being where the masks are taken from. Each conv layer is in
# the form (num_features, kernel_size, **kwdargs). An empty
# list means to use the source for prototype masks. If the
# kernel_size is negative, this creates a deconv layer instead.
# If the kernel_size is negative and the num_features is None,
# this creates a simple bilinear interpolation layer instead.
# - mask_proto_bias (bool): Whether to include an extra coefficient that corresponds to a proto
# mask of all ones.
# - mask_proto_prototype_activation (func): The activation to apply to each prototype mask.
# - mask_proto_mask_activation (func): After summing the prototype masks with the predicted
# coeffs, what activation to apply to the final mask.
# - mask_proto_coeff_activation (func): The activation to apply to the mask coefficients.
# - mask_proto_crop (bool): If True, crop the mask with the predicted bbox during training.
# - mask_proto_crop_expand (float): If cropping, the percent to expand the cropping bbox by
# in each direction. This is to make the model less reliant
# on perfect bbox predictions.
# - mask_proto_loss (str [l1|disj]): If not None, apply an l1 or disjunctive regularization
# loss directly to the prototype masks.
# - mask_proto_binarize_downsampled_gt (bool): Binarize GT after dowsnampling during training?
# - mask_proto_normalize_mask_loss_by_sqrt_area (bool): Whether to normalize mask loss by sqrt(sum(gt))
# - mask_proto_reweight_mask_loss (bool): Reweight mask loss such that background is divided by
# #background and foreground is divided by #foreground.
# - mask_proto_grid_file (str): The path to the grid file to use with the next option.
# This should be a numpy.dump file with shape [numgrids, h, w]
# where h and w are w.r.t. the mask_proto_src convout.
# - mask_proto_use_grid (bool): Whether to add extra grid features to the proto_net input.
# - mask_proto_coeff_gate (bool): Add an extra set of sigmoided coefficients that is multiplied
# into the predicted coefficients in order to "gate" them.
# - mask_proto_prototypes_as_features (bool): For each prediction module, downsample the prototypes
# to the convout size of that module and supply the prototypes as input
# in addition to the already supplied backbone features.
# - mask_proto_prototypes_as_features_no_grad (bool): If the above is set, don't backprop gradients to
# to the prototypes from the network head.
# - mask_proto_remove_empty_masks (bool): Remove masks that are downsampled to 0 during loss calculations.
# - mask_proto_reweight_coeff (float): The coefficient to multiple the forground pixels with if reweighting.
# - mask_proto_coeff_diversity_loss (bool): Apply coefficient diversity loss on the coefficients so that the same
# instance has similar coefficients.
# - mask_proto_coeff_diversity_alpha (float): The weight to use for the coefficient diversity loss.
# - mask_proto_normalize_emulate_roi_pooling (bool): Normalize the mask loss to emulate roi pooling's affect on loss.
# - mask_proto_double_loss (bool): Whether to use the old loss in addition to any special new losses.
# - mask_proto_double_loss_alpha (float): The alpha to weight the above loss.
'lincomb': 1,
})
activation_func = Config({ 'tanh': torch.tanh, 'sigmoid': torch.sigmoid, 'softmax': lambda x: torch.nn.functional.softmax(x, dim=-1), 'relu': lambda x: torch.nn.functional.relu(x, inplace=True), 'none': lambda x: x, })
fpn_base = Config({
'num_features': 256,
# The upsampling mode used
'interpolation_mode': 'bilinear',
# The number of extra layers to be produced by downsampling starting at P5
'num_downsample': 1,
# Whether to down sample with a 3x3 stride 2 conv layer instead of just a stride 2 selection
'use_conv_downsample': False,
# Whether to pad the pred layers with 1 on each side (I forgot to add this at the start)
# This is just here for backwards compatibility
'pad': True,
})
coco_base_config = Config({ 'dataset': coco2014_dataset, 'num_classes': 81, # This should include the background class
'max_iter': 400000,
# The maximum number of detections for evaluation
'max_num_detections': 100,
# dw' = momentum * dw - lr * (grad + decay * w)
'lr': 1e-3,
'momentum': 0.9,
'decay': 5e-4,
# For each lr step, what to multiply the lr with
'gamma': 0.1,
'lr_steps': (280000, 360000, 400000),
# Initial learning rate to linearly warmup from (if until > 0)
'lr_warmup_init': 1e-4,
# If > 0 then increase the lr linearly from warmup_init to lr each iter for until iters
'lr_warmup_until': 500,
# The terms to scale the respective loss by
'conf_alpha': 1,
'bbox_alpha': 1.5,
'mask_alpha': 0.4 / 256 * 140 * 140, # Some funky equation. Don't worry about it.
# Eval.py sets this if you just want to run YOLACT as a detector
'eval_mask_branch': True,
# See mask_type for details.
'mask_type': mask_type.direct,
'mask_size': 16,
'masks_to_train': 100,
'mask_proto_src': None,
'mask_proto_net': [(256, 3, {}), (256, 3, {})],
'mask_proto_bias': False,
'mask_proto_prototype_activation': activation_func.relu,
'mask_proto_mask_activation': activation_func.sigmoid,
'mask_proto_coeff_activation': activation_func.tanh,
'mask_proto_crop': True,
'mask_proto_crop_expand': 0,
'mask_proto_loss': None,
'mask_proto_binarize_downsampled_gt': True,
'mask_proto_normalize_mask_loss_by_sqrt_area': False,
'mask_proto_reweight_mask_loss': False,
'mask_proto_grid_file': 'data/grid.npy',
'mask_proto_use_grid': False,
'mask_proto_coeff_gate': False,
'mask_proto_prototypes_as_features': False,
'mask_proto_prototypes_as_features_no_grad': False,
'mask_proto_remove_empty_masks': False,
'mask_proto_reweight_coeff': 1,
'mask_proto_coeff_diversity_loss': False,
'mask_proto_coeff_diversity_alpha': 1,
'mask_proto_normalize_emulate_roi_pooling': False,
'mask_proto_double_loss': False,
'mask_proto_double_loss_alpha': 1,
# SSD data augmentation parameters
# Randomize hue, vibrance, etc.
'augment_photometric_distort': True,
# Have a chance to scale down the image and pad (to emulate smaller detections)
'augment_expand': True,
# Potentialy sample a random crop from the image and put it in a random place
'augment_random_sample_crop': True,
# Mirror the image with a probability of 1/2
'augment_random_mirror': True,
# If using batchnorm anywhere in the backbone, freeze the batchnorm layer during training.
# Note: any additional batch norm layers after the backbone will not be frozen.
'freeze_bn': False,
# Set this to a config object if you want an FPN (inherit from fpn_base). See fpn_base for details.
'fpn': None,
# Use the same weights for each network head
'share_prediction_module': False,
# For hard negative mining, instead of using the negatives that are leastl confidently background,
# use negatives that are most confidently not background.
'ohem_use_most_confident': False,
# Use focal loss as described in https://arxiv.org/pdf/1708.02002.pdf instead of OHEM
'use_focal_loss': False,
'focal_loss_alpha': 0.25,
'focal_loss_gamma': 2,
# The initial bias toward forground objects, as specified in the focal loss paper
'focal_loss_init_pi': 0.01,
# Whether to use sigmoid focal loss instead of softmax, all else being the same.
'use_sigmoid_focal_loss': False,
# Use class[0] to be the objectness score and class[1:] to be the softmax predicted class.
# Note: at the moment this is only implemented if use_focal_loss is on.
'use_objectness_score': False,
# Adds a global pool + fc layer to the smallest selected layer that predicts the existence of each of the 80 classes.
# This branch is only evaluated during training time and is just there for multitask learning.
'use_class_existence_loss': False,
'class_existence_alpha': 1,
# Adds a 1x1 convolution directly to the biggest selected layer that predicts a semantic segmentations for each of the 80 classes.
# This branch is only evaluated during training time and is just there for multitask learning.
'use_semantic_segmentation_loss': False,
'semantic_segmentation_alpha': 1,
# Match gt boxes using the Box2Pix change metric instead of the standard IoU metric.
# Note that the threshold you set for iou_threshold should be negative with this setting on.
'use_change_matching': False,
# Uses the same network format as mask_proto_net, except this time it's for adding extra head layers before the final
# prediction in prediction modules. If this is none, no extra layers will be added.
'extra_head_net': None,
# What params should the final head layers have (the ones that predict box, confidence, and mask coeffs)
'head_layer_params': {'kernel_size': 3, 'padding': 1},
# Add extra layers between the backbone and the network heads
# The order is (bbox, conf, mask)
'extra_layers': (0, 0, 0),
# During training, to match detections with gt, first compute the maximum gt IoU for each prior.
# Then, any of those priors whose maximum overlap is over the positive threshold, mark as positive.
# For any priors whose maximum is less than the negative iou threshold, mark them as negative.
# The rest are neutral and not used in calculating the loss.
'positive_iou_threshold': 0.5,
'negative_iou_threshold': 0.5,
# If less than 1, anchors treated as a negative that have a crowd iou over this threshold with
# the crowd boxes will be treated as a neutral.
'crowd_iou_threshold': 1,
# This is filled in at runtime by Yolact's __init__, so don't touch it
'mask_dim': None,
# Input image size. If preserve_aspect_ratio is False, min_size is ignored.
'min_size': 200,
'max_size': 300,
# Whether or not to do post processing on the cpu at test time
'force_cpu_nms': True,
# Whether to use mask coefficient cosine similarity nms instead of bbox iou nms
'use_coeff_nms': False,
# Whether or not to have a separate branch whose sole purpose is to act as the coefficients for coeff_diversity_loss
# Remember to turn on coeff_diversity_loss, or these extra coefficients won't do anything!
# To see their effect, also remember to turn on use_coeff_nms.
'use_instance_coeff': False,
'num_instance_coeffs': 64,
# Whether or not to tie the mask loss / box loss to 0
'train_masks': True,
'train_boxes': True,
# If enabled, the gt masks will be cropped using the gt bboxes instead of the predicted ones.
# This speeds up training time considerably but results in much worse mAP at test time.
'use_gt_bboxes': False,
# Whether or not to preserve aspect ratio when resizing the image.
# If True, uses the faster r-cnn resizing scheme.
# If False, all images are resized to max_size x max_size
'preserve_aspect_ratio': False,
# Whether or not to use the prediction module (c) from DSSD
'use_prediction_module': False,
# Whether or not to use the predicted coordinate scheme from Yolo v2
'use_yolo_regressors': False,
# For training, bboxes are considered "positive" if their anchors have a 0.5 IoU overlap
# or greater with a ground truth box. If this is true, instead of using the anchor boxes
# for this IoU computation, the matching function will use the predicted bbox coordinates.
# Don't turn this on if you're not using yolo regressors!
'use_prediction_matching': False,
# A list of settings to apply after the specified iteration. Each element of the list should look like
# (iteration, config_dict) where config_dict is a dictionary you'd pass into a config object's init.
'delayed_settings': [],
# Use command-line arguments to set this.
'no_jit': False,
'backbone': None,
'name': 'base_config',
})
yolact_base_config = coco_base_config.copy({ 'name': 'yolact_base',
# Dataset stuff
'dataset': my_custom_dataset,
###############'num_classes': len(coco2017_dataset.class_names) + 1,
'num_classes': 3,
# Image Size
############################################'max_size': 550,
#'max_size': 5760,
'max_size': 5760,
# Training params
#######################################'lr_steps': (280000, 600000, 700000, 750000),
##################################'max_iter': 800000,
'lr_steps': (2800, 6000, 7000, 7500),
'max_iter': 8000,
# Backbone Settings
########################################'backbone': resnet101_backbone.copy({
'backbone': resnet50_backbone.copy({
'selected_layers': list(range(1, 4)),
'use_pixel_scales': True,
'preapply_sqrt': False,
'use_square_anchors': True, # This is for backward compatability with a bug
'pred_aspect_ratios': [ [[1, 1/2, 2]] ]*5,
'pred_scales': [[24], [48], [96], [192], [384]],
}),
# FPN Settings
'fpn': fpn_base.copy({
'use_conv_downsample': True,
'num_downsample': 2,
}),
# Mask Settings
'mask_type': mask_type.lincomb,
'mask_alpha': 6.125,
'mask_proto_src': 0,
'mask_proto_net': [(256, 3, {'padding': 1})] * 3 + [(None, -2, {}), (256, 3, {'padding': 1})] + [(32, 1, {})],
'mask_proto_normalize_emulate_roi_pooling': True,
# Other stuff
'share_prediction_module': True,
'extra_head_net': [(256, 3, {'padding': 1})],
'positive_iou_threshold': 0.5,
'negative_iou_threshold': 0.4,
'crowd_iou_threshold': 0.7,
'use_semantic_segmentation_loss': True,
})
yolact_im400_config = yolact_base_config.copy({ 'name': 'yolact_im400',
'max_size': 400,
'backbone': yolact_base_config.backbone.copy({
'pred_scales': [[int(x[0] / yolact_base_config.max_size * 400)] for x in yolact_base_config.backbone.pred_scales],
}),
})
yolact_im700_config = yolact_base_config.copy({ 'name': 'yolact_im700',
'masks_to_train': 300,
'max_size': 700,
'backbone': yolact_base_config.backbone.copy({
'pred_scales': [[int(x[0] / yolact_base_config.max_size * 700)] for x in yolact_base_config.backbone.pred_scales],
}),
})
yolact_darknet53_config = yolact_base_config.copy({ 'name': 'yolact_darknet53',
'backbone': darknet53_backbone.copy({
'selected_layers': list(range(2, 5)),
'pred_scales': yolact_base_config.backbone.pred_scales,
'pred_aspect_ratios': yolact_base_config.backbone.pred_aspect_ratios,
'use_pixel_scales': True,
'preapply_sqrt': False,
'use_square_anchors': True, # This is for backward compatability with a bug
}),
})
yolact_resnet50_config = yolact_base_config.copy({ 'name': 'yolact_resnet50',
'backbone': resnet50_backbone.copy({
'selected_layers': list(range(1, 4)),
'pred_scales': yolact_base_config.backbone.pred_scales,
'pred_aspect_ratios': yolact_base_config.backbone.pred_aspect_ratios,
'use_pixel_scales': True,
'preapply_sqrt': False,
'use_square_anchors': True, # This is for backward compatability with a bug
}),
})
cfg = yolact_base_config.copy()
def set_cfg(config_name:str): """ Sets the active config. Works even if cfg is already imported! """ global cfg
# Note this is not just an eval because I'm lazy, but also because it can
# be used like ssd300_config.copy({'max_size': 400}) for extreme fine-tuning
cfg.replace(eval(config_name))
def set_dataset(dataset_name:str): """ Sets the dataset of the current config. """ cfg.dataset = eval(dataset_name)
Uhh first, please revert all your changes to yolact_base_config
except for the 'dataset' and 'num_classes' ones. If you want to use resnet50, use yolact_resnet50_config
instead of yolact_base_config
(the dataset info copies over so you don't need to set that up again).
Then your dataset has 'has_gt'
set to False. Your dataset has annotations, so you should set that to true (otherwise YOLACT can't train).
Finally, can you give the command you're using to train and your "export CUDA_VISIBLE_DEVICES" command if you're using it?
hi ! i have followed your commands. the training command i use is _python train.py --config=yolact_base_config --batchsize=1 i tried to use resnet50 because of the memory error and since i use 576*384 pics now, i use the default resnet101 instead of resnet50.
the latest error is: if i do not write something about CUDA,the error imformation is as follows:
Multiple GPUs detected! Turning off JIT. loading annotations into memory... Done (t=0.01s) creating index... index created! loading annotations into memory... Done (t=0.01s) creating index... index created! Initializing weights... Begin training!
Traceback (most recent call last): File "train.py", line 382, in
train() File "train.py", line 257, in train losses = criterion(out, wrapper, wrapper.make_mask()) File "/home/sjtu/anaconda3/envs/yolact/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, kwargs) File "/home/sjtu/anaconda3/envs/yolact/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 143, in forward outputs = self.parallel_apply(replicas, inputs, kwargs) File "/home/sjtu/anaconda3/envs/yolact/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 153, in parallel_apply return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) File "/home/sjtu/anaconda3/envs/yolact/lib/python3.7/site-packages/torch/nn/parallel/parallel_apply.py", line 83, in parallel_apply raise output File "/home/sjtu/anaconda3/envs/yolact/lib/python3.7/site-packages/torch/nn/parallel/parallel_apply.py", line 59, in _worker output = module(*input, *kwargs) File "/home/sjtu/anaconda3/envs/yolact/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(input, kwargs) File "/home/sjtu/yolact/layers/modules/multibox_loss.py", line 141, in forward pos_idx = pos.unsqueeze(pos.dim()).expand_as(loc_data) RuntimeError: The expanded size of the tensor (19248) must match the existing size (9624) at non-singleton dimension 1. Target sizes: [1, 19248, 4]. Tensor sizes: [1, 9624, 1]
if i run export CUDA_VISIBLE_DEVICES=0 before the training command,the error information change as follows:
loading annotations into memory... Done (t=0.01s) creating index... index created! loading annotations into memory... Done (t=0.01s) creating index... index created! Initializing weights... Begin training!
Traceback (most recent call last): File "train.py", line 382, in
train() File "train.py", line 257, in train losses = criterion(out, wrapper, wrapper.make_mask()) File "/home/sjtu/anaconda3/envs/yolact/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, kwargs) File "/home/sjtu/anaconda3/envs/yolact/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 141, in forward return self.module(*inputs[0], *kwargs[0]) File "/home/sjtu/anaconda3/envs/yolact/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(input, kwargs) File "/home/sjtu/yolact/layers/modules/multibox_loss.py", line 163, in forward losses.update(self.lincomb_mask_loss(pos, idx_t, loc_data, mask_data, priors, proto_data, masks, gt_box_t, inst_data)) File "/home/sjtu/yolact/layers/modules/multibox_loss.py", line 510, in lincomb_mask_loss pred_masks = proto_masks @ proto_coef.t() RuntimeError: cublas runtime error : the GPU program failed to execute at /opt/conda/conda-bld/pytorch_1549635019666/work/aten/src/THC/THCBlas.cu:258
it seems to be something wrong with my cuda version? my cuda version is:
nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2017 NVIDIA Corporation Built on Fri_Sep__1_21:08:03_CDT_2017 Cuda compilation tools, release 9.0, V9.0.176
my ubunu is 16.04 and my pytorch is '1.0.1.post2' and my python is 3.7.2
i guess i need to reinstall cuda next thanks for your patience and kindness!
So a couple things: Use a batch size greater than 1 or YOLACT won't train properly (I recommend the default of 8), but I don't think that's your problem here.
Instead, note that the rtx cards are only supported on Cuda versions 10 and above so you'll need to reinstall pytorch with Cuda 10 support.
yes! training is ok! i have install CUDA10.0 and reinstall pytorch1.0.1 with conda before the training command, i first run command export CUDA_VISIBLE_DEVICES=0,1 then training with batchsize=8 is ok
i still have several small questions to bother you first, my pics is 576*384 now, so should i change the number to 576 or just keep the origin 550 in the following config file?
yolact_base_config = coco_base_config.copy({ 'name': 'yolact_base',
# Dataset stuff 'dataset': my_custom_dataset, 'num_classes': 3, # Image Size 'max_size': 576,
second, when training, i find the gpu utility is not so high, in nvidia-smi , most time the utility number is around 10%, is it right?
third, when training,the terminal window keeps outputing map information, i think these calculation is too much, can i just training without keep calculating map?
thanks a lot~~
I recommend only using 1 gpu in your case instead of both since your work load will probably be faster on one gpu.
Then I output validation map every 2 epochs (cycles through the entire dataset), so since your dataset is much smaller, you'll want to increase that by setting --validation_epoch=200
or some other high number like that.
ok,i get it. and should i change image size from 550 to 576 in my config file? thank you~~
Nah, you should keep it 550 since everything's set up for that image size. The code will automatically scale it to that size.
thank you! i will restart the training for a whole night let us see whether yolact can solve small objects in small pics tomorrow hope the result is fancy!
oh the result is bad :( i will cut the origin pic into 550*550 small blocks and label them again to make objects relatively big thanks for your timely help!
hi , your work is so nice! i am trying to training with my custom data, i used labelme to make instance segmentation data annotation and turned it into coco fomat. following the readme, all is well until i ran the training order: _python train.py --config=yolact_base_config --batchsize=1 different errors occurs, sometime say memory is not enough(32GB total),sometime say cuda memory is not enough(my computer has 2*2080TI), sometime other error imformation. i open the system monitor and run the order, find that the memory usually increase from 3GB to 32GB and then error occurs. i think the key problem is that my custom dataset use too big picture ,which is 5760x3840 do you have any suggestions?should i change some config parameters? should i resize all pictures to small one and use labelme to make annotations again? how small should i resize? i have only two classes of objects need to be segmantated and these two kind of objects are relatively small to the whole picture, one picture may have over 100 objects. and considering that use labelme to make annotations again is quite tiring, if there is some fancy way to resize pictures and their relatated annotations,it will be awesome! i am new to deep learning, thanks for your kindness!