dbolya / yolact

A simple, fully convolutional model for real-time instance segmentation.
MIT License
5.01k stars 1.32k forks source link

training not working #645

Closed fredO13 closed 2 years ago

fredO13 commented 3 years ago

Hi,

I followed this tutorial train yolact with a custom coco dataset and managed to have the train.py script running, but mAP value is not changing at all... I think the network is not learning anything... Any suggestion (Did not change anything and use the same datset) ?

Thanks

fredO13 commented 3 years ago

first log line... dont understand why "dataset":null

{"type": "session", "session": 0, "data": {"autoscale": true, "batch_alloc": null, "batch_size": 8, "config": "yolact_resnet50_cig_butts_config", "cuda": true, "dataset": null, "decay": 0.0005, "gamma": 0.1, "interrupt": true, "keep_latest": false, "keep_latest_interval": 100000, "log": true, "log_folder": "logs/", "log_gpu": false, "lr": 0.001, "momentum": 0.9, "num_workers": 4, "resume": null, "save_folder": "weights/", "save_interval": 10000, "start_iter": -1, "validation_epoch": 2, "validation_size": 5000}, "time": 1620655729.8864672}

fredO13 commented 3 years ago

Processing Images ██████████████████████████████ 200 / 200 (100.00%) 19.88 fps Saving data... Calculating mAP...

   |  all  |  .50  |  .55  |  .60  |  .65  |  .70  |  .75  |  .80  |  .85  |  .90  |  .95  |

-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+ box | 11.01 | 12.48 | 12.48 | 12.48 | 12.48 | 12.48 | 12.48 | 12.48 | 11.97 | 9.58 | 1.16 | mask | 10.74 | 12.48 | 12.48 | 12.48 | 12.48 | 12.48 | 12.48 | 12.35 | 12.19 | 7.98 | 0.02 | -------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

kidpaul94 commented 3 years ago

This usually happens when there is something wrong with dataset or config.py (Classes & Labels). I presume that you are using your custom dataset?

fredO13 commented 3 years ago

@kidpaul94 Thanks for your answer. I'm using the dataset from immersivelimit for testing purpose as i'm still annotating mine. I guess the dataset is fine. Would you mind taking a look at my config.py bellow ? Thanks

`from backbone import ResNetBackbone, VGGBackbone, ResNetBackboneGN, DarkNetBackbone from math import sqrt import torch

for making bounding boxes pretty

COLORS = ((244, 67, 54), (233, 30, 99), (156, 39, 176), (103, 58, 183), ( 63, 81, 181), ( 33, 150, 243), ( 3, 169, 244), ( 0, 188, 212), ( 0, 150, 136), ( 76, 175, 80), (139, 195, 74), (205, 220, 57), (255, 235, 59), (255, 193, 7), (255, 152, 0), (255, 87, 34), (121, 85, 72), (158, 158, 158), ( 96, 125, 139))

These are in BGR and are for ImageNet

MEANS = (103.94, 116.78, 123.68) STD = (57.38, 57.12, 58.40)

COCO_CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')

COCO_LABEL_MAP = { 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 13: 12, 14: 13, 15: 14, 16: 15, 17: 16, 18: 17, 19: 18, 20: 19, 21: 20, 22: 21, 23: 22, 24: 23, 25: 24, 27: 25, 28: 26, 31: 27, 32: 28, 33: 29, 34: 30, 35: 31, 36: 32, 37: 33, 38: 34, 39: 35, 40: 36, 41: 37, 42: 38, 43: 39, 44: 40, 46: 41, 47: 42, 48: 43, 49: 44, 50: 45, 51: 46, 52: 47, 53: 48, 54: 49, 55: 50, 56: 51, 57: 52, 58: 53, 59: 54, 60: 55, 61: 56, 62: 57, 63: 58, 64: 59, 65: 60, 67: 61, 70: 62, 72: 63, 73: 64, 74: 65, 75: 66, 76: 67, 77: 68, 78: 69, 79: 70, 80: 71, 81: 72, 82: 73, 84: 74, 85: 75, 86: 76, 87: 77, 88: 78, 89: 79, 90: 80}

----------------------- CONFIG CLASS -----------------------

class Config(object): """ Holds the configuration for anything you want it to. To get the currently active config, call get_cfg().

To use, just do cfg.x instead of cfg['x'].
I made this because doing cfg['x'] all the time is dumb.
"""

def __init__(self, config_dict):
    for key, val in config_dict.items():
        self.__setattr__(key, val)

def copy(self, new_config_dict={}):
    """
    Copies this config into a new config object, making
    the changes given by new_config_dict.
    """

    ret = Config(vars(self))

    for key, val in new_config_dict.items():
        ret.__setattr__(key, val)

    return ret

def replace(self, new_config_dict):
    """
    Copies new_config_dict into this config object.
    Note: new_config_dict can also be a config object.
    """
    if isinstance(new_config_dict, Config):
        new_config_dict = vars(new_config_dict)

    for key, val in new_config_dict.items():
        self.__setattr__(key, val)

def print(self):
    for k, v in vars(self).items():
        print(k, ' = ', v)

----------------------- DATASETS -----------------------

dataset_base = Config({ 'name': 'Base Dataset',

# Training images and annotations
'train_images': './data/coco/images/',
'train_info':   'path_to_annotation_file',

# Validation images and annotations.
'valid_images': './data/coco/images/',
'valid_info':   'path_to_annotation_file',

# Whether or not to load GT. If this is False, eval.py quantitative evaluation won't work.
'has_gt': True,

# A list of names for each of you classes.
'class_names': COCO_CLASSES,

# COCO class ids aren't sequential, so this is a bandage fix. If your ids aren't sequential,
# provide a map from category_id -> index in class_names + 1 (the +1 is there because it's 1-indexed).
# If not specified, this just assumes category ids start at 1 and increase sequentially.
'label_map': None

})

coco2014_dataset = dataset_base.copy({ 'name': 'COCO 2014',

'train_info': './data/coco/annotations/instances_train2014.json',
'valid_info': './data/coco/annotations/instances_val2014.json',

'label_map': COCO_LABEL_MAP

})

coco2017_dataset = dataset_base.copy({ 'name': 'COCO 2017',

'train_info': './data/coco/annotations/instances_train2017.json',
'valid_info': './data/coco/annotations/instances_val2017.json',

'label_map': COCO_LABEL_MAP

})

coco2017_testdev_dataset = dataset_base.copy({ 'name': 'COCO 2017 Test-Dev',

'valid_info': './data/coco/annotations/image_info_test-dev2017.json',
'has_gt': False,

'label_map': COCO_LABEL_MAP

})

PASCAL_CLASSES = ("aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor")

pascal_sbd_dataset = dataset_base.copy({ 'name': 'Pascal SBD 2012',

'train_images': './data/sbd/img',
'valid_images': './data/sbd/img',

'train_info': './data/sbd/pascal_sbd_train.json',
'valid_info': './data/sbd/pascal_sbd_val.json',

'class_names': PASCAL_CLASSES,

})

cig_butts_dataset = dataset_base.copy({ 'name': 'Immersive Limit - Cigarette Butts', 'train_info': 'E:/FredO/Data/Yolact/cig_butts/train/coco_annotations.json', 'train_images': 'E:/FredO/Data/Yolact/cig_butts/train/images/', 'valid_info': 'E:/FredO/Data/Yolact/cig_butts/val/coco_annotations.json', 'valid_images': 'E:/FredO/Data/Yolact/cig_butts/val/images/', 'class_names': ('cig_butt'), 'label_map': { 1: 1 } })

----------------------- TRANSFORMS -----------------------

resnet_transform = Config({ 'channel_order': 'RGB', 'normalize': True, 'subtract_means': False, 'to_float': False, })

vgg_transform = Config({

Note that though vgg is traditionally BGR,

# the channel order of vgg_reducedfc.pth is RGB.
'channel_order': 'RGB',
'normalize': False,
'subtract_means': True,
'to_float': False,

})

darknet_transform = Config({ 'channel_order': 'RGB', 'normalize': False, 'subtract_means': False, 'to_float': True, })

----------------------- BACKBONES -----------------------

backbone_base = Config({ 'name': 'Base Backbone', 'path': 'path/to/pretrained/weights', 'type': object, 'args': tuple(), 'transform': resnet_transform,

'selected_layers': list(),
'pred_scales': list(),
'pred_aspect_ratios': list(),

'use_pixel_scales': False,
'preapply_sqrt': True,
'use_square_anchors': False,

})

resnet101_backbone = backbone_base.copy({ 'name': 'ResNet101', 'path': 'resnet101_reducedfc.pth', 'type': ResNetBackbone, 'args': ([3, 4, 23, 3],), 'transform': resnet_transform,

'selected_layers': list(range(2, 8)),
'pred_scales': [[1]]*6,
'pred_aspect_ratios': [ [[0.66685089, 1.7073535, 0.87508774, 1.16524493, 0.49059086]] ] * 6,

})

resnet101_gn_backbone = backbone_base.copy({ 'name': 'ResNet101_GN', 'path': 'R-101-GN.pkl', 'type': ResNetBackboneGN, 'args': ([3, 4, 23, 3],), 'transform': resnet_transform,

'selected_layers': list(range(2, 8)),
'pred_scales': [[1]]*6,
'pred_aspect_ratios': [ [[0.66685089, 1.7073535, 0.87508774, 1.16524493, 0.49059086]] ] * 6,

})

resnet101_dcn_inter3_backbone = resnet101_backbone.copy({ 'name': 'ResNet101_DCN_Interval3', 'args': ([3, 4, 23, 3], [0, 4, 23, 3], 3), })

resnet50_backbone = resnet101_backbone.copy({ 'name': 'ResNet50', 'path': 'resnet50-19c8e357.pth', 'type': ResNetBackbone, 'args': ([3, 4, 6, 3],), 'transform': resnet_transform, })

resnet50_dcnv2_backbone = resnet50_backbone.copy({ 'name': 'ResNet50_DCNv2', 'args': ([3, 4, 6, 3], [0, 4, 6, 3]), })

darknet53_backbone = backbone_base.copy({ 'name': 'DarkNet53', 'path': 'darknet53.pth', 'type': DarkNetBackbone, 'args': ([1, 2, 8, 8, 4],), 'transform': darknet_transform,

'selected_layers': list(range(3, 9)),
'pred_scales': [[3.5, 4.95], [3.6, 4.90], [3.3, 4.02], [2.7, 3.10], [2.1, 2.37], [1.8, 1.92]],
'pred_aspect_ratios': [ [[1, sqrt(2), 1/sqrt(2), sqrt(3), 1/sqrt(3)][:n], [1]] for n in [3, 5, 5, 5, 3, 3] ],

})

vgg16_arch = [[64, 64], [ 'M', 128, 128], [ 'M', 256, 256, 256], [('M', {'kernel_size': 2, 'stride': 2, 'ceil_mode': True}), 512, 512, 512], [ 'M', 512, 512, 512], [('M', {'kernel_size': 3, 'stride': 1, 'padding': 1}), (1024, {'kernel_size': 3, 'padding': 6, 'dilation': 6}), (1024, {'kernel_size': 1})]]

vgg16_backbone = backbone_base.copy({ 'name': 'VGG16', 'path': 'vgg16_reducedfc.pth', 'type': VGGBackbone, 'args': (vgg16_arch, [(256, 2), (128, 2), (128, 1), (128, 1)], [3]), 'transform': vgg_transform,

'selected_layers': [3] + list(range(5, 10)),
'pred_scales': [[5, 4]]*6,
'pred_aspect_ratios': [ [[1], [1, sqrt(2), 1/sqrt(2), sqrt(3), 1/sqrt(3)][:n]] for n in [3, 5, 5, 5, 3, 3] ],

})

----------------------- MASK BRANCH TYPES -----------------------

mask_type = Config({

Direct produces masks directly as the output of each pred module.

# This is denoted as fc-mask in the paper.
# Parameters: mask_size, use_gt_bboxes
'direct': 0,

# Lincomb produces coefficients as the output of each pred module then uses those coefficients
# to linearly combine features from a prototype network to create image-sized masks.
# Parameters:
#   - masks_to_train (int): Since we're producing (near) full image masks, it'd take too much
#                           vram to backprop on every single mask. Thus we select only a subset.
#   - mask_proto_src (int): The input layer to the mask prototype generation network. This is an
#                           index in backbone.layers. Use to use the image itself instead.
#   - mask_proto_net (list<tuple>): A list of layers in the mask proto network with the last one
#                                   being where the masks are taken from. Each conv layer is in
#                                   the form (num_features, kernel_size, **kwdargs). An empty
#                                   list means to use the source for prototype masks. If the
#                                   kernel_size is negative, this creates a deconv layer instead.
#                                   If the kernel_size is negative and the num_features is None,
#                                   this creates a simple bilinear interpolation layer instead.
#   - mask_proto_bias (bool): Whether to include an extra coefficient that corresponds to a proto
#                             mask of all ones.
#   - mask_proto_prototype_activation (func): The activation to apply to each prototype mask.
#   - mask_proto_mask_activation (func): After summing the prototype masks with the predicted
#                                        coeffs, what activation to apply to the final mask.
#   - mask_proto_coeff_activation (func): The activation to apply to the mask coefficients.
#   - mask_proto_crop (bool): If True, crop the mask with the predicted bbox during training.
#   - mask_proto_crop_expand (float): If cropping, the percent to expand the cropping bbox by
#                                     in each direction. This is to make the model less reliant
#                                     on perfect bbox predictions.
#   - mask_proto_loss (str [l1|disj]): If not None, apply an l1 or disjunctive regularization
#                                      loss directly to the prototype masks.
#   - mask_proto_binarize_downsampled_gt (bool): Binarize GT after dowsnampling during training?
#   - mask_proto_normalize_mask_loss_by_sqrt_area (bool): Whether to normalize mask loss by sqrt(sum(gt))
#   - mask_proto_reweight_mask_loss (bool): Reweight mask loss such that background is divided by
#                                           #background and foreground is divided by #foreground.
#   - mask_proto_grid_file (str): The path to the grid file to use with the next option.
#                                 This should be a numpy.dump file with shape [numgrids, h, w]
#                                 where h and w are w.r.t. the mask_proto_src convout.
#   - mask_proto_use_grid (bool): Whether to add extra grid features to the proto_net input.
#   - mask_proto_coeff_gate (bool): Add an extra set of sigmoided coefficients that is multiplied
#                                   into the predicted coefficients in order to "gate" them.
#   - mask_proto_prototypes_as_features (bool): For each prediction module, downsample the prototypes
#                                 to the convout size of that module and supply the prototypes as input
#                                 in addition to the already supplied backbone features.
#   - mask_proto_prototypes_as_features_no_grad (bool): If the above is set, don't backprop gradients to
#                                 to the prototypes from the network head.
#   - mask_proto_remove_empty_masks (bool): Remove masks that are downsampled to 0 during loss calculations.
#   - mask_proto_reweight_coeff (float): The coefficient to multiple the forground pixels with if reweighting.
#   - mask_proto_coeff_diversity_loss (bool): Apply coefficient diversity loss on the coefficients so that the same
#                                             instance has similar coefficients.
#   - mask_proto_coeff_diversity_alpha (float): The weight to use for the coefficient diversity loss.
#   - mask_proto_normalize_emulate_roi_pooling (bool): Normalize the mask loss to emulate roi pooling's affect on loss.
#   - mask_proto_double_loss (bool): Whether to use the old loss in addition to any special new losses.
#   - mask_proto_double_loss_alpha (float): The alpha to weight the above loss.
#   - mask_proto_split_prototypes_by_head (bool): If true, this will give each prediction head its own prototypes.
#   - mask_proto_crop_with_pred_box (bool): Whether to crop with the predicted box or the gt box.
'lincomb': 1,

})

----------------------- ACTIVATION FUNCTIONS -----------------------

activation_func = Config({ 'tanh': torch.tanh, 'sigmoid': torch.sigmoid, 'softmax': lambda x: torch.nn.functional.softmax(x, dim=-1), 'relu': lambda x: torch.nn.functional.relu(x, inplace=True), 'none': lambda x: x, })

----------------------- FPN DEFAULTS -----------------------

fpn_base = Config({

The number of features to have in each FPN layer

'num_features': 256,

# The upsampling mode used
'interpolation_mode': 'bilinear',

# The number of extra layers to be produced by downsampling starting at P5
'num_downsample': 1,

# Whether to down sample with a 3x3 stride 2 conv layer instead of just a stride 2 selection
'use_conv_downsample': False,

# Whether to pad the pred layers with 1 on each side (I forgot to add this at the start)
# This is just here for backwards compatibility
'pad': True,

# Whether to add relu to the downsampled layers.
'relu_downsample_layers': False,

# Whether to add relu to the regular layers
'relu_pred_layers': True,

})

----------------------- CONFIG DEFAULTS -----------------------

coco_base_config = Config({ 'dataset': coco2014_dataset, 'num_classes': 81, # This should include the background class

'max_iter': 400000,

# The maximum number of detections for evaluation
'max_num_detections': 100,

# dw' = momentum * dw - lr * (grad + decay * w)
'lr': 1e-3,
'momentum': 0.9,
'decay': 5e-4,

# For each lr step, what to multiply the lr with
'gamma': 0.1,
'lr_steps': (280000, 360000, 400000),

# Initial learning rate to linearly warmup from (if until > 0)
'lr_warmup_init': 1e-4,

# If > 0 then increase the lr linearly from warmup_init to lr each iter for until iters
'lr_warmup_until': 500,

# The terms to scale the respective loss by
'conf_alpha': 1,
'bbox_alpha': 1.5,
'mask_alpha': 0.4 / 256 * 140 * 140, # Some funky equation. Don't worry about it.

# Eval.py sets this if you just want to run YOLACT as a detector
'eval_mask_branch': True,

# Top_k examples to consider for NMS
'nms_top_k': 200,
# Examples with confidence less than this are not considered by NMS
'nms_conf_thresh': 0.05,
# Boxes with IoU overlap greater than this threshold will be culled during NMS
'nms_thresh': 0.5,

# See mask_type for details.
'mask_type': mask_type.direct,
'mask_size': 16,
'masks_to_train': 100,
'mask_proto_src': None,
'mask_proto_net': [(256, 3, {}), (256, 3, {})],
'mask_proto_bias': False,
'mask_proto_prototype_activation': activation_func.relu,
'mask_proto_mask_activation': activation_func.sigmoid,
'mask_proto_coeff_activation': activation_func.tanh,
'mask_proto_crop': True,
'mask_proto_crop_expand': 0,
'mask_proto_loss': None,
'mask_proto_binarize_downsampled_gt': True,
'mask_proto_normalize_mask_loss_by_sqrt_area': False,
'mask_proto_reweight_mask_loss': False,
'mask_proto_grid_file': 'data/grid.npy',
'mask_proto_use_grid':  False,
'mask_proto_coeff_gate': False,
'mask_proto_prototypes_as_features': False,
'mask_proto_prototypes_as_features_no_grad': False,
'mask_proto_remove_empty_masks': False,
'mask_proto_reweight_coeff': 1,
'mask_proto_coeff_diversity_loss': False,
'mask_proto_coeff_diversity_alpha': 1,
'mask_proto_normalize_emulate_roi_pooling': False,
'mask_proto_double_loss': False,
'mask_proto_double_loss_alpha': 1,
'mask_proto_split_prototypes_by_head': False,
'mask_proto_crop_with_pred_box': False,

# SSD data augmentation parameters
# Randomize hue, vibrance, etc.
'augment_photometric_distort': True,
# Have a chance to scale down the image and pad (to emulate smaller detections)
'augment_expand': True,
# Potentialy sample a random crop from the image and put it in a random place
'augment_random_sample_crop': True,
# Mirror the image with a probability of 1/2
'augment_random_mirror': True,
# Flip the image vertically with a probability of 1/2
'augment_random_flip': False,
# With uniform probability, rotate the image [0,90,180,270] degrees
'augment_random_rot90': False,

# Discard detections with width and height smaller than this (in absolute width and height)
'discard_box_width': 4 / 550,
'discard_box_height': 4 / 550,

# If using batchnorm anywhere in the backbone, freeze the batchnorm layer during training.
# Note: any additional batch norm layers after the backbone will not be frozen.
'freeze_bn': False,

# Set this to a config object if you want an FPN (inherit from fpn_base). See fpn_base for details.
'fpn': None,

# Use the same weights for each network head
'share_prediction_module': False,

# For hard negative mining, instead of using the negatives that are leastl confidently background,
# use negatives that are most confidently not background.
'ohem_use_most_confident': False,

# Use focal loss as described in https://arxiv.org/pdf/1708.02002.pdf instead of OHEM
'use_focal_loss': False,
'focal_loss_alpha': 0.25,
'focal_loss_gamma': 2,

# The initial bias toward forground objects, as specified in the focal loss paper
'focal_loss_init_pi': 0.01,

# Keeps track of the average number of examples for each class, and weights the loss for that class accordingly.
'use_class_balanced_conf': False,

# Whether to use sigmoid focal loss instead of softmax, all else being the same.
'use_sigmoid_focal_loss': False,

# Use class[0] to be the objectness score and class[1:] to be the softmax predicted class.
# Note: at the moment this is only implemented if use_focal_loss is on.
'use_objectness_score': False,

# Adds a global pool + fc layer to the smallest selected layer that predicts the existence of each of the 80 classes.
# This branch is only evaluated during training time and is just there for multitask learning.
'use_class_existence_loss': False,
'class_existence_alpha': 1,

# Adds a 1x1 convolution directly to the biggest selected layer that predicts a semantic segmentations for each of the 80 classes.
# This branch is only evaluated during training time and is just there for multitask learning.
'use_semantic_segmentation_loss': False,
'semantic_segmentation_alpha': 1,

# Adds another branch to the netwok to predict Mask IoU.
'use_mask_scoring': False,
'mask_scoring_alpha': 1,

# Match gt boxes using the Box2Pix change metric instead of the standard IoU metric.
# Note that the threshold you set for iou_threshold should be negative with this setting on.
'use_change_matching': False,

# Uses the same network format as mask_proto_net, except this time it's for adding extra head layers before the final
# prediction in prediction modules. If this is none, no extra layers will be added.
'extra_head_net': None,

# What params should the final head layers have (the ones that predict box, confidence, and mask coeffs)
'head_layer_params': {'kernel_size': 3, 'padding': 1},

# Add extra layers between the backbone and the network heads
# The order is (bbox, conf, mask)
'extra_layers': (0, 0, 0),

# During training, to match detections with gt, first compute the maximum gt IoU for each prior.
# Then, any of those priors whose maximum overlap is over the positive threshold, mark as positive.
# For any priors whose maximum is less than the negative iou threshold, mark them as negative.
# The rest are neutral and not used in calculating the loss.
'positive_iou_threshold': 0.5,
'negative_iou_threshold': 0.5,

# When using ohem, the ratio between positives and negatives (3 means 3 negatives to 1 positive)
'ohem_negpos_ratio': 3,

# If less than 1, anchors treated as a negative that have a crowd iou over this threshold with
# the crowd boxes will be treated as a neutral.
'crowd_iou_threshold': 1,

# This is filled in at runtime by Yolact's __init__, so don't touch it
'mask_dim': None,

# Input image size.
'max_size': 300,

# Whether or not to do post processing on the cpu at test time
'force_cpu_nms': True,

# Whether to use mask coefficient cosine similarity nms instead of bbox iou nms
'use_coeff_nms': False,

# Whether or not to have a separate branch whose sole purpose is to act as the coefficients for coeff_diversity_loss
# Remember to turn on coeff_diversity_loss, or these extra coefficients won't do anything!
# To see their effect, also remember to turn on use_coeff_nms.
'use_instance_coeff': False,
'num_instance_coeffs': 64,

# Whether or not to tie the mask loss / box loss to 0
'train_masks': True,
'train_boxes': True,
# If enabled, the gt masks will be cropped using the gt bboxes instead of the predicted ones.
# This speeds up training time considerably but results in much worse mAP at test time.
'use_gt_bboxes': False,

# Whether or not to preserve aspect ratio when resizing the image.
# If True, this will resize all images to be max_size^2 pixels in area while keeping aspect ratio.
# If False, all images are resized to max_size x max_size
'preserve_aspect_ratio': False,

# Whether or not to use the prediction module (c) from DSSD
'use_prediction_module': False,

# Whether or not to use the predicted coordinate scheme from Yolo v2
'use_yolo_regressors': False,

# For training, bboxes are considered "positive" if their anchors have a 0.5 IoU overlap
# or greater with a ground truth box. If this is true, instead of using the anchor boxes
# for this IoU computation, the matching function will use the predicted bbox coordinates.
# Don't turn this on if you're not using yolo regressors!
'use_prediction_matching': False,

# A list of settings to apply after the specified iteration. Each element of the list should look like
# (iteration, config_dict) where config_dict is a dictionary you'd pass into a config object's init.
'delayed_settings': [],

# Use command-line arguments to set this.
'no_jit': False,

'backbone': None,
'name': 'base_config',

# Fast Mask Re-scoring Network
# Inspried by Mask Scoring R-CNN (https://arxiv.org/abs/1903.00241)
# Do not crop out the mask with bbox but slide a convnet on the image-size mask,
# then use global pooling to get the final mask score
'use_maskiou': False,

# Archecture for the mask iou network. A (num_classes-1, 1, {}) layer is appended to the end.
'maskiou_net': [],

# Discard predicted masks whose area is less than this
'discard_mask_area': -1,

'maskiou_alpha': 1.0,
'rescore_mask': False,
'rescore_bbox': False,
'maskious_to_train': -1,

})

----------------------- YOLACT v1.0 CONFIGS -----------------------

yolact_base_config = coco_base_config.copy({ 'name': 'yolact_base',

# Dataset stuff
'dataset': coco2017_dataset,
'num_classes': len(coco2017_dataset.class_names) + 1,

# Image Size
'max_size': 550,

# Training params
'lr_steps': (280000, 600000, 700000, 750000),
'max_iter': 800000,

# Backbone Settings
'backbone': resnet101_backbone.copy({
    'selected_layers': list(range(1, 4)),
    'use_pixel_scales': True,
    'preapply_sqrt': False,
    'use_square_anchors': True, # This is for backward compatability with a bug

    'pred_aspect_ratios': [ [[1, 1/2, 2]] ]*5,
    'pred_scales': [[24], [48], [96], [192], [384]],
}),

# FPN Settings
'fpn': fpn_base.copy({
    'use_conv_downsample': True,
    'num_downsample': 2,
}),

# Mask Settings
'mask_type': mask_type.lincomb,
'mask_alpha': 6.125,
'mask_proto_src': 0,
'mask_proto_net': [(256, 3, {'padding': 1})] * 3 + [(None, -2, {}), (256, 3, {'padding': 1})] + [(32, 1, {})],
'mask_proto_normalize_emulate_roi_pooling': True,

# Other stuff
'share_prediction_module': True,
'extra_head_net': [(256, 3, {'padding': 1})],

'positive_iou_threshold': 0.5,
'negative_iou_threshold': 0.4,

'crowd_iou_threshold': 0.7,

'use_semantic_segmentation_loss': True,

})

yolact_im400_config = yolact_base_config.copy({ 'name': 'yolact_im400',

'max_size': 400,
'backbone': yolact_base_config.backbone.copy({
    'pred_scales': [[int(x[0] / yolact_base_config.max_size * 400)] for x in yolact_base_config.backbone.pred_scales],
}),

})

yolact_im700_config = yolact_base_config.copy({ 'name': 'yolact_im700',

'masks_to_train': 300,
'max_size': 700,
'backbone': yolact_base_config.backbone.copy({
    'pred_scales': [[int(x[0] / yolact_base_config.max_size * 700)] for x in yolact_base_config.backbone.pred_scales],
}),

})

yolact_darknet53_config = yolact_base_config.copy({ 'name': 'yolact_darknet53',

'backbone': darknet53_backbone.copy({
    'selected_layers': list(range(2, 5)),

    'pred_scales': yolact_base_config.backbone.pred_scales,
    'pred_aspect_ratios': yolact_base_config.backbone.pred_aspect_ratios,
    'use_pixel_scales': True,
    'preapply_sqrt': False,
    'use_square_anchors': True, # This is for backward compatability with a bug
}),

})

yolact_resnet50_config = yolact_base_config.copy({ 'name': 'yolact_resnet50',

'backbone': resnet50_backbone.copy({
    'selected_layers': list(range(1, 4)),

    'pred_scales': yolact_base_config.backbone.pred_scales,
    'pred_aspect_ratios': yolact_base_config.backbone.pred_aspect_ratios,
    'use_pixel_scales': True,
    'preapply_sqrt': False,
    'use_square_anchors': True, # This is for backward compatability with a bug
}),

})

yolact_resnet50_cig_butts_config = yolact_resnet50_config.copy({ 'name': 'yolact_resnet50_cig_butts',

Dataset stuff

'dataset': cig_butts_dataset,
'num_classes': len(cig_butts_dataset.class_names) + 1,

# Image Size
'max_size': 512,

})

yolact_resnet50_pascal_config = yolact_resnet50_config.copy({ 'name': None, # Will default to yolact_resnet50_pascal

# Dataset stuff
'dataset': pascal_sbd_dataset,
'num_classes': len(pascal_sbd_dataset.class_names) + 1,

'max_iter': 120000,
'lr_steps': (60000, 100000),

'backbone': yolact_resnet50_config.backbone.copy({
    'pred_scales': [[32], [64], [128], [256], [512]],
    'use_square_anchors': False,
})

})

----------------------- YOLACT++ CONFIGS -----------------------

yolact_plus_base_config = yolact_base_config.copy({ 'name': 'yolact_plus_base',

'backbone': resnet101_dcn_inter3_backbone.copy({
    'selected_layers': list(range(1, 4)),

    'pred_aspect_ratios': [ [[1, 1/2, 2]] ]*5,
    'pred_scales': [[i * 2 ** (j / 3.0) for j in range(3)] for i in [24, 48, 96, 192, 384]],
    'use_pixel_scales': True,
    'preapply_sqrt': False,
    'use_square_anchors': False,
}),

'use_maskiou': True,
'maskiou_net': [(8, 3, {'stride': 2}), (16, 3, {'stride': 2}), (32, 3, {'stride': 2}), (64, 3, {'stride': 2}), (128, 3, {'stride': 2})],
'maskiou_alpha': 25,
'rescore_bbox': False,
'rescore_mask': True,

'discard_mask_area': 5*5,

})

yolact_plus_resnet50_config = yolact_plus_base_config.copy({ 'name': 'yolact_plus_resnet50',

'backbone': resnet50_dcnv2_backbone.copy({
    'selected_layers': list(range(1, 4)),

    'pred_aspect_ratios': [ [[1, 1/2, 2]] ]*5,
    'pred_scales': [[i * 2 ** (j / 3.0) for j in range(3)] for i in [24, 48, 96, 192, 384]],
    'use_pixel_scales': True,
    'preapply_sqrt': False,
    'use_square_anchors': False,
}),

})

Default config

cfg = yolact_base_config.copy()

def set_cfg(config_name:str): """ Sets the active config. Works even if cfg is already imported! """ global cfg

# Note this is not just an eval because I'm lazy, but also because it can
# be used like ssd300_config.copy({'max_size': 400}) for extreme fine-tuning
cfg.replace(eval(config_name))

if cfg.name is None:
    cfg.name = config_name.split('_config')[0]

def set_dataset(dataset_name:str): """ Sets the dataset of the current config. """ cfg.dataset = eval(dataset_name)

`

kidpaul94 commented 3 years ago

I'm not sure whether you are trying to do transfer learning, but try this one first:

'class_names': ('cig_butt'), -> 'class_names': ('cig_butt',),

fredO13 commented 3 years ago

@kidpaul94 Yes I'm doing transfer learning from a res50-based network trained on coco. Thanks a lot for your suggestion it seems to learn correctly now ! BTW, can you explain the difference ? Thanks again Fred

kidpaul94 commented 3 years ago

I'm not really sure about why this happens, but missing comma may cause an issue in connection between class name and labels on your training dataset.

Camilochiang commented 2 years ago

@fredO13 If the proposed solution solve your problem, please close the issue ;)