Open long2double opened 3 years ago
两个问题
第一个问题: multitracker.py中update_sep3函数中已用F.normalize, with torch.no_grad(): output = self.model(im_blob)[-1] hm = output['hm'].sigmoid_() wh = output['wh'] id_feature = output['id'] id_feature = F.normalize(id_feature, dim=1) 然而,STrack类中,update_features方法中,再次使用np.linalg.norm(feat)是否已经重复归一化操作?(需要去掉F.normalize???)
with torch.no_grad(): output = self.model(im_blob)[-1] hm = output['hm'].sigmoid_() wh = output['wh'] id_feature = output['id'] id_feature = F.normalize(id_feature, dim=1)
第二个问题: update_sep3函数中,504行 for i_class in range(1, self.opt.num_classes + 1): activated_stracks = [] refind_stracks = [] lost_stracks = [] removed_stracks = [] dets = dets_classes[i_class] if conf_thres is None: remain_inds = dets[:, 4] > self.opt.conf_thres else: remain_inds = dets[:, 4] > conf_thres[i_class-1] dets = dets[remain_inds] ############是否少了索引remain_inds?????############### id_feature = cls_id_feats[i_class-1]
Indeed!!! Thx a lot!
For the second one, did you get better results after fixing this?
暂时还没有进行训练,只是看了下源码,后续有结果在联系
两个问题
第一个问题: multitracker.py中update_sep3函数中已用F.normalize,
with torch.no_grad(): output = self.model(im_blob)[-1] hm = output['hm'].sigmoid_() wh = output['wh'] id_feature = output['id'] id_feature = F.normalize(id_feature, dim=1)
然而,STrack类中,update_features方法中,再次使用np.linalg.norm(feat)是否已经重复归一化操作?(需要去掉F.normalize???)第二个问题: update_sep3函数中,504行 for i_class in range(1, self.opt.num_classes + 1): activated_stracks = [] refind_stracks = [] lost_stracks = [] removed_stracks = [] dets = dets_classes[i_class] if conf_thres is None: remain_inds = dets[:, 4] > self.opt.conf_thres else: remain_inds = dets[:, 4] > conf_thres[i_class-1] dets = dets[remain_inds] ############是否少了索引remain_inds?????############### id_feature = cls_id_feats[i_class-1]