I try to use https://github.com/fregu856/ebms_regression repo with docker file. I think everything is ok, (Ubuntu 16.04 host file docker image run with success) I know this is very old but any chance to solve it?
Regards.
2023-01-31 14:55:41,056 maskrcnn_benchmark INFO: Saving config into: /root/ebms_regression/detection/checkpoints/nce+/config.yml
2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Using 1 GPUs
2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Namespace(config_file='configs/nce+_train.yaml', distributed=False, local_rank=0, opts=[], skip_test=False)
2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Collecting env info (might take some time)
2023-01-31 15:13:18,383 maskrcnn_benchmark INFO:
PyTorch version: 1.0.0.dev20190401
Is debug build: No
CUDA used to build PyTorch: 9.0.176
❓ Questions and Help
Hi,
I try to use https://github.com/fregu856/ebms_regression repo with docker file. I think everything is ok, (Ubuntu 16.04 host file docker image run with success) I know this is very old but any chance to solve it?
Regards.
2023-01-31 14:55:41,056 maskrcnn_benchmark INFO: Saving config into: /root/ebms_regression/detection/checkpoints/nce+/config.yml 2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Using 1 GPUs 2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Namespace(config_file='configs/nce+_train.yaml', distributed=False, local_rank=0, opts=[], skip_test=False) 2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Collecting env info (might take some time) 2023-01-31 15:13:18,383 maskrcnn_benchmark INFO: PyTorch version: 1.0.0.dev20190401 Is debug build: No CUDA used to build PyTorch: 9.0.176
OS: Ubuntu 16.04.5 LTS GCC version: (Ubuntu 5.4.0-6ubuntu1~16.04.11) 5.4.0 20160609 CMake version: version 3.14.20190401-g3e12
Python version: 3.6 Is CUDA available: Yes CUDA runtime version: 9.0.176 GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU Nvidia driver version: 512.78 cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.4.2
Versions of relevant libraries: [pip3] numpy==1.19.5 [pip3] torch-nightly==1.0.0.dev20190401 [pip3] torchvision-nightly==0.2.1 ....................................... Selected optimization level O0: Pure FP32 training.
Defaults for this optimization level are: enabled : True opt_level : O0 cast_model_type : torch.float32 patch_torch_functions : False keep_batchnorm_fp32 : None master_weights : False loss_scale : 1.0 Processing user overrides (additional kwargs that are not None)... After processing overrides, optimization options are: enabled : True opt_level : O0 cast_model_type : torch.float32 patch_torch_functions : False keep_batchnorm_fp32 : None master_weights : False loss_scale : 1.0 2023-02-05 11:30:55,867 maskrcnn_benchmark.utils.checkpoint INFO: Loading checkpoint from /root/ebms_regression/detection/pretrained_models/e2e_faster_R-50-FPN_1x.pkl 2023-02-05 11:30:56,796 maskrcnn_benchmark.utils.c2_model_loading INFO: Remapping C2 weights 2023-02-05 11:30:56,796 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: bbox_pred_b mapped name: bbox_pred.bias 2023-02-05 11:30:56,797 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: bbox_pred_w mapped name: bbox_pred.weight ........... creating index... index created! 2023-02-05 10:49:27,779 maskrcnn_benchmark.utils.miscellaneous INFO: Saving labels mapping into /root/ebms_regression/detection/checkpoints/nce+/labels.json 2023-02-05 10:49:27,781 maskrcnn_benchmark.trainer INFO: Start training THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=383 error=8 : invalid device function