facebookresearch / muavic

MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation
Other
358 stars 30 forks source link

MuAViC

A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation.

Paper

Overview

MuAViC provides

MuAViC data statistics

The raw data is collected from TED/TEDx talk recordings.

Detailed statistics

Audio-Visual Speech Recognition

| Language | Code | Train Hours (H+P) | Train Speakers | |:---:|:---:|:---:|:---:| | English | En | 436 + 0 | 4.7K | | Arabic | Ar | 16 + 0 | 95 | | German | De | 10 + 0 | 53 | | Greek | El | 25 + 0 | 113 | | Spanish | Es | 178 + 0 | 987 | | French | Fr | 176 + 0 | 948 | | Italian | It | 101 + 0 | 487 | | Portuguese | Pt | 153 + 0 | 810 | | Russian | Ru | 49 + 0 | 238 |

Audio-Visual En-X Speech-to-Text Translation

| Direction | Code | Train Hours (H+P) | Train Speakers | |:---:|:---:|:---:|:---:| | English-Greek | En-El | 17 + 420 | 4.7K | | English-Spanish | En-Es | 21 + 416 | 4.7K | | English-French | En-Fr | 21 + 416 | 4.7K | | English-Italian | En-It | 20 + 417 | 4.7K | | English-Portuguese | En-Pt | 18 + 419 | 4.7K | | English-Russian | En-Ru | 20 + 417 | 4.7K |

Audio-Visual X-En Speech-to-Text Translation

| Direction | Code | Train Hours (H+P) | Train Speakers | |:---:|:---:|:---:|:---:| | Greek-English | El-En | 8 + 17 | 113 | | Spanish-English | Es-En | 64 + 114 | 987 | | French-English | Fr-En | 45 + 131 | 948 | | Italian-English | It-En | 48 + 53 | 487 | | Portuguese-English | Pt-En | 53 + 100 | 810 | | Russian-English | Ru-En | 8 + 41 | 238 |

Getting Data

We provide scripts to generate the audio/video data and AV-HuBERT training manifests for MuAViC.

First, clone this repo for the scripts

git clone https://github.com/facebookresearch/muavic.git

Install required packages:

conda install -c conda-forge ffmpeg==4.2.2
conda install -c conda-forge sox
pip install -r requirements.txt

Then get audio-visual speech recognition and translation data via

python get_data.py --root-path ${ROOT} --src-lang ${SRC_LANG}

where the speech language ${SRC_LANG} is one of en, ar, de, el, es, fr, it, pt and ru.

Generated data will be saved to ${ROOT}/muavic:

Models

In the following table, we provide all end-to-end trained models mentioned in our paper:

Task Languages Best Checkpoint Dictionary Tokenizer
AVSR ar best_ckpt.pt dict tokenizer
de best_ckpt.pt dict tokenizer
el best_ckpt.pt dict tokenizer
en best_ckpt.pt dict tokenizer
es best_ckpt.pt dict tokenizer
fr best_ckpt.pt dict tokenizer
it best_ckpt.pt dict tokenizer
pt best_ckpt.pt dict tokenizer
ru best_ckpt.pt dict tokenizer
ar,de,el,es,fr,it,pt,ru best_ckpt.pt dict tokenizer
AVST en-el best_ckpt.pt dict tokenizer
en-es best_ckpt.pt dict tokenizer
en-fr best_ckpt.pt dict tokenizer
en-it best_ckpt.pt dict tokenizer
en-pt best_ckpt.pt dict tokenizer
en-ru best_ckpt.pt dict tokenizer
el-en best_ckpt.pt dict tokenizer
es-en best_ckpt.pt dict tokenizer
fr-en best_ckpt.pt dict tokenizer
it-en best_ckpt.pt dict tokenizer
pt-en best_ckpt.pt dict tokenizer
ru-en best_ckpt.pt dict tokenizer
{el,es,fr,it,pt,ru}-en best_ckpt.pt dict tokenizer

Demo

To try out our state-of-the-art audio-visual models with different audio and video inputs, including a recorded video through the webcam or an uploaded video, checkout our demo:

https://github.com/facebookresearch/muavic/assets/15960959/d03df3b0-488c-443c-ba3b-452b1a5765d8

You can read more about our model in the README file in the demo folder.

Training

For training Audio-Visual models, we are going to use AV-HuBERT framework.

  1. Clone and install AV-HuBERT in the root directory:

    $ # Clone the "muavic" branch of av_hubert's repo
    $ git -b muavic clone https://github.com/facebookresearch/av_hubert.git
    $ # Set the fairseq version
    $ cd avhubert
    $ git submodule init
    $ git submodule update
    $ # Install av-hubert's requirements
    $ pip install -r requirements.txt
    $ # Install fairseq
    $ cd fairseq
    $ pip install --editable ./
  2. Download an AV-HuBERT pre-trained model from here.

  3. Open the training script (scripts/train.sh) and replace these variables:

    # language direction (e.g "en" or "en-fr")
    LANG=
    
    # path where output trained models will be located
    OUT_PATH= 
    
    # path to the downloaded pre-trained model
    PRETRAINED_MODEL_PATH=
  4. Run the training script:

    $ bash scripts/train.sh

Note:\ All audio-visual models found here used the large_vox_iter5.pt pre-trained model.

Decoding/Evaluating

To evaluate your trained model (or our [trained models]()) against MuAViC, follow these steps:

  1. Open the decoding script (scripts/decode.sh) and replace these variables:

    # language direction (e.g "en" or "en-fr")
    LANG=???
    
    # data split (e.g "test" or "valid")
    GROUP=???
    
    # inference modality (choices: "audio", "video", "audio,video")
    MODALITIES=???
    
    # path to the trained model
    MODEL_PATH=???
    
    # path where decoding results and scores will be located
    OUT_PATH=???
  2. Run the decoding script:

    $ bash scripts/decode.sh

    License

CC-BY-NC 4.0

Citation

@article{anwar2023muavic,
  title={MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation},
  author={Anwar, Mohamed and Shi, Bowen and Goswami, Vedanuj and Hsu, Wei-Ning and Pino, Juan and Wang, Changhan},
  journal={arXiv preprint arXiv:2303.00628},
  year={2023}
}