The compute capability of this board is 3.2,but requirements of multipathnet claims for compute capability 3.5+. If i install multipathnet on this board, what will happen? Thanks !
I have not jet bought this board.
some information about JetsonTK1:
NVIDIA Kepler GPU with 192 CUDA cores
• NVIDIA 4-Plus-1 quad-core ARM Cortex-A15 CPU
• 2 GB x 16 memory with 64-bit width and 16 GB 4.51 eMMC memory
Tegra K1 SoC
• NVIDIA Kepler GPU with 192 CUDA cores
• NVIDIA 4-Plus-1 quad-core ARM Cortex-A15 CPU
• 2 GB x 16 memory with 64-bit width
• 16 GB 4.51 eMMC memory
• Half mini-PCIE slot 1
• Full size SD/MMC connector
• 1 USB 2.0 port, micro AB 1
• 1 Full-size HDMI port
• RS232 serial port
• 1 ALC5639 Realtek Audio codec with Mic in and Line out
• 1 RTL8111GS Realtek GigE LAN
• 1 SATA data port
• SPI 4MByte boot flash
CUDA Developer Information
• CUDA Version: 6.0
• CUDA Cores:
Computational Capability: sm_32
Number of cores: 192
• CUDA libraries:
cudart, cufft, cublas, curand, cusparse, npp, opencv4tegra for registered developers
Visionworks: available on request
• CUDA tools:
for local development, all the command line tools (compiler, cuda-gdb, cuda-memcheck, command-line profiler
for remote development, all the command-line tools and the visual tools too (NSight Eclipse Edition, Visual Profiler)
The compute capability of this board is 3.2,but requirements of multipathnet claims for compute capability 3.5+. If i install multipathnet on this board, what will happen? Thanks !
I have not jet bought this board.
some information about JetsonTK1:
NVIDIA Kepler GPU with 192 CUDA cores • NVIDIA 4-Plus-1 quad-core ARM Cortex-A15 CPU • 2 GB x 16 memory with 64-bit width and 16 GB 4.51 eMMC memory
Tegra K1 SoC
• NVIDIA Kepler GPU with 192 CUDA cores • NVIDIA 4-Plus-1 quad-core ARM Cortex-A15 CPU • 2 GB x 16 memory with 64-bit width • 16 GB 4.51 eMMC memory • Half mini-PCIE slot 1 • Full size SD/MMC connector • 1 USB 2.0 port, micro AB 1 • 1 Full-size HDMI port • RS232 serial port • 1 ALC5639 Realtek Audio codec with Mic in and Line out • 1 RTL8111GS Realtek GigE LAN • 1 SATA data port • SPI 4MByte boot flash
CUDA Developer Information
• CUDA Version: 6.0 • CUDA Cores:
Computational Capability: sm_32 Number of cores: 192
• CUDA libraries: cudart, cufft, cublas, curand, cusparse, npp, opencv4tegra for registered developers Visionworks: available on request
• CUDA tools:
for local development, all the command line tools (compiler, cuda-gdb, cuda-memcheck, command-line profiler for remote development, all the command-line tools and the visual tools too (NSight Eclipse Edition, Visual Profiler)