The model I am using is 'resnet152_oid_v1.0.0.h5', the code is 'examples/resnet50_retinanet.py'., can you help me? thanks!
Whenever the execution occurs, the OOM appears,
from keras_retinanet.models import load_model
model = load_model('/path/to/model.h5', backbone_name='resnet50')
boxes, scores, labels = model.predict_on_batch(np.expand_dims(image, axis=0))`
`2021-01-04 13:56:22.037701: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Sum Total of in-use chunks: 1.02GiB
2021-01-04 13:56:22.045240: I tensorflow/core/common_runtime/bfc_allocator.cc:1042] total_region_allocatedbytes: 1435228416 memorylimit: 1435228569 available bytes: 153 curr_region_allocationbytes: 2870457344
2021-01-04 13:56:22.058249: I tensorflow/core/common_runtime/bfc_allocator.cc:1048] Stats:
Limit: 1435228569
InUse: 1099622912
MaxInUse: 1434610176
NumAllocs: 4248
MaxAllocSize: 397448192
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0
2021-01-04 13:56:22.079624: W tensorflow/core/common_runtime/bfcallocator.cc:441] ****____****_____
2021-01-04 13:56:22.091495: W tensorflow/core/framework/op_kernel.cc:1763] OP_REQUIRES failed at conv_ops.cc:538 : Resource exhausted: OOM when allocating tensor with shape[1,4500,100,134] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
Traceback (most recent call last):
File "", line 1, in
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\keras\engine\training.py", line 1820, in predict_on_batch
outputs = self.predict_function(iterator)
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\def_function.py", line 828, in call__
result = self._call(*args, **kwds)
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\def_function.py", line 894, in _call
return self._concrete_stateful_fn._call_flat(
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\function.py", line 1918, in _call_flat
return self._build_call_outputs(self._inference_function.call(
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\function.py", line 555, in call
outputs = execute.execute(
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\execute.py", line 59, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[1,4500,100,134] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node retinanet-bbox/classification_submodel/pyramid_classification/Conv2D (defined at :1) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[1,4500,100,134] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node retinanet-bbox/classification_submodel/pyramid_classification/Conv2D (defined at :1) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
`
The model I am using is 'resnet152_oid_v1.0.0.h5', the code is 'examples/resnet50_retinanet.py'., can you help me? thanks!
Whenever the execution occurs, the OOM appears,
from keras_retinanet.models import load_model model = load_model('/path/to/model.h5', backbone_name='resnet50') boxes, scores, labels = model.predict_on_batch(np.expand_dims(image, axis=0))`
`2021-01-04 13:56:22.037701: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Sum Total of in-use chunks: 1.02GiB 2021-01-04 13:56:22.045240: I tensorflow/core/common_runtime/bfc_allocator.cc:1042] total_region_allocatedbytes: 1435228416 memorylimit: 1435228569 available bytes: 153 curr_region_allocationbytes: 2870457344 2021-01-04 13:56:22.058249: I tensorflow/core/common_runtime/bfc_allocator.cc:1048] Stats: Limit: 1435228569 InUse: 1099622912 MaxInUse: 1434610176 NumAllocs: 4248 MaxAllocSize: 397448192 Reserved: 0 PeakReserved: 0 LargestFreeBlock: 0
2021-01-04 13:56:22.079624: W tensorflow/core/common_runtime/bfcallocator.cc:441] ****____****_____ 2021-01-04 13:56:22.091495: W tensorflow/core/framework/op_kernel.cc:1763] OP_REQUIRES failed at conv_ops.cc:538 : Resource exhausted: OOM when allocating tensor with shape[1,4500,100,134] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc Traceback (most recent call last): File "", line 1, in
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\keras\engine\training.py", line 1820, in predict_on_batch
outputs = self.predict_function(iterator)
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\def_function.py", line 828, in call__
result = self._call(*args, **kwds)
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\def_function.py", line 894, in _call
return self._concrete_stateful_fn._call_flat(
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\function.py", line 1918, in _call_flat
return self._build_call_outputs(self._inference_function.call(
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\function.py", line 555, in call
outputs = execute.execute(
File "D:\tool\python_tool\anaconda\install\lib\site-packages\tensorflow\python\eager\execute.py", line 59, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[1,4500,100,134] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node retinanet-bbox/classification_submodel/pyramid_classification/Conv2D (defined at :1) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[1,4500,100,134] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[node retinanet-bbox/classification_submodel/pyramid_classification/Conv2D (defined at:1) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
0 successful operations. 0 derived errors ignored. [Op:__inference_predict_function_53005]
Function call stack: predict_function -> predict_function`