Outlier (or anomaly) detection is the technical term for “finding weird stuff”. It’s used in a wide variety of applications including malware detection and looking for credit card fraud. For example, if you live in Ottawa but your credit card was used to buy a gaming console in Boise, Idaho (without any other purchases) that would be anomalous. Outlier detection is related to clustering. In clustering we are trying to find the groups of related data. In outlier detection we are trying to find the points that don’t belong to any groups. There are three different categories of outliers
O is for Outlier Detection | ABCs of data science
Outlier (or anomaly) detection is the technical term for “finding weird stuff”. It’s used in a wide variety of applications including malware detection and looking for credit card fraud. For example, if you live in Ottawa but your credit card was used to buy a gaming console in Boise, Idaho (without any other purchases) that would be anomalous. Outlier detection is related to clustering. In clustering we are trying to find the groups of related data. In outlier detection we are trying to find the points that don’t belong to any groups. There are three different categories of outliers
https://abcsofdatascience.ca/blog/o-is-for-outlier-detection