Invoke is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, and serves as the foundation for multiple commercial products.
Image generation aborts with the following error when generating "large" images (i.e. 832 x 1248 with an SD1.5 model).
Traceback (most recent call last):
File "invokeai/.venv/lib/python3.10/site-packages/invokeai/app/services/session_processor/session_processor_default.py", line 129, in run_node
output = invocation.invoke_internal(context=context, services=self._services)
File "invokeai/.venv/lib/python3.10/site-packages/invokeai/app/invocations/baseinvocation.py", line 298, in invoke_internal
output = self.invoke(context)
File "invokeai/.venv/lib/python3.10/site-packages/invokeai/app/invocations/denoise_latents.py", line 812, in invoke
return self._old_invoke(context)
File "invokeai/.venv/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, kwargs)
File ".pyenv/versions/3.10.9/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, *kwds)
File "invokeai/.venv/lib/python3.10/site-packages/invokeai/app/invocations/denoise_latents.py", line 1073, in _old_invoke
result_latents = pipeline.latents_from_embeddings(
File "invokeai/.venv/lib/python3.10/site-packages/invokeai/backend/stable_diffusion/diffusers_pipeline.py", line 394, in latents_from_embeddings
step_output = self.step(
File "invokeai/.venv/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(args, kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/invokeai/backend/stable_diffusion/diffusers_pipeline.py", line 545, in step
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
File "invokeai/.venv/lib/python3.10/site-packages/invokeai/backend/stable_diffusion/diffusion/shared_invokeai_diffusion.py", line 199, in do_unet_step
) = self._apply_standard_conditioning(
File "invokeai/.venv/lib/python3.10/site-packages/invokeai/backend/stable_diffusion/diffusion/shared_invokeai_diffusion.py", line 343, in _apply_standard_conditioning
both_results = self.model_forward_callback(
File "invokeai/.venv/lib/python3.10/site-packages/invokeai/backend/stable_diffusion/diffusers_pipeline.py", line 608, in _unet_forward
return self.unet(
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, *kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/diffusers/models/unets/unet_2d_condition.py", line 1216, in forward
sample, res_samples = downsample_block(
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/diffusers/models/unets/unet_2d_blocks.py", line 1288, in forward
hidden_states = attn(
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, *kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(args, kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/diffusers/models/transformers/transformer_2d.py", line 442, in forward
hidden_states = block(
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, *kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/diffusers/models/attention.py", line 507, in forward
attn_output = self.attn1(
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "invokeai/.venv/lib/python3.10/site-packages/diffusers/models/attention_processor.py", line 495, in forward
return self.processor(
File "invokeai/.venv/lib/python3.10/site-packages/diffusers/models/attention_processor.py", line 2383, in call
hidden_states = F.scaled_dot_product_attention(
RuntimeError: Invalid buffer size: 288.00 GB
What you expected to happen
Since generating images with the same settings works perfectly up to version 5.0.2, i would expect invoke to use a similar amount of memory for generation in 5.4.1 as well.
I can't verify if this issue already exists in 5.1.x - 5.3.x since i can't install those versions
How to reproduce the problem
No response
Additional context
The amount of memory required according to the error message scales with the image resolution:
I initially thought this was an issue with my model cache and created a new invoke installation in a separate folder. I only imported a single model in this installation, but get the same error with the same memory requirements
I also noticed that image generation in 5.4.1 was slower (up to 7.76 it/sec) than 5.0.2 (consistent 2.65 it/sec)
Adding/ Removing LoRAs or changing the Scheduler does not seem to affect the error
Rolling back to invoke v5.0.2 resolves this issue.
Is there an existing issue for this problem?
Operating system
macOS
GPU vendor
Apple Silicon (MPS)
GPU model
No response
GPU VRAM
No response
Version number
5.4.1rc2
Browser
Chrome
Python dependencies
No response
What happened
Image generation aborts with the following error when generating "large" images (i.e. 832 x 1248 with an SD1.5 model).
What you expected to happen
Since generating images with the same settings works perfectly up to version 5.0.2, i would expect invoke to use a similar amount of memory for generation in 5.4.1 as well.
I can't verify if this issue already exists in 5.1.x - 5.3.x since i can't install those versions
How to reproduce the problem
No response
Additional context
The amount of memory required according to the error message scales with the image resolution:
I initially thought this was an issue with my model cache and created a new invoke installation in a separate folder. I only imported a single model in this installation, but get the same error with the same memory requirements
I also noticed that image generation in 5.4.1 was slower (up to 7.76 it/sec) than 5.0.2 (consistent 2.65 it/sec)
Adding/ Removing LoRAs or changing the Scheduler does not seem to affect the error
Rolling back to invoke v5.0.2 resolves this issue.
Discord username
No response