Open vladimirvlasevsky opened 3 months ago
FWIW, this can be worked around by returning an OrderedDict
from the method create_model_inputs()
.
def create_model_inputs():
input_features = OrderedDict()
input_features["user_id"] = keras.Input(
name="user_id", shape=(1,), dtype="string"
)
input_features["sequence_movie_ids"] = keras.Input(
name="sequence_movie_ids", shape=(sequence_length - 1,), dtype="string"
)
input_features["sequence_ratings"] = keras.Input(
name="sequence_ratings", shape=(sequence_length - 1,), dtype=tf.float32
)
input_features["sex"] = keras.Input(name="sex", shape=(1,), dtype="string")
input_features["age_group"] = keras.Input(
name="age_group", shape=(1,), dtype="string"
)
input_features["occupation"] = keras.Input(
name="occupation", shape=(1,), dtype="string"
)
input_features["target_movie_id"] = keras.Input(
name="target_movie_id", shape=(1,), dtype="string"
)
return input_features
Issue Type
Bug
Source
source
Keras Version
Keras 3.4.1
Custom Code
No
OS Platform and Distribution
Windows 10
Python version
3.12.3
GPU model and memory
No response
Current Behavior?
I want to reproduce this example using Keras 3.4.1, but I get an error message. I noticed that this example works when using Keras 3.2.1.
Standalone code to reproduce the issue or tutorial link
Relevant log output