matt-graham / mici

Manifold Markov chain Monte Carlo methods in Python
https://matt-graham.github.io/mici/
MIT License
223 stars 27 forks source link
hamiltonian-monte-carlo hmc hybrid-monte-carlo inference-algorithms markov-chain-monte-carlo mcmc python
Mici logo
[![PyPI version](https://badge.fury.io/py/mici.svg)](https://pypi.org/project/mici) [![Zenodo DOI](https://zenodo.org/badge/52494384.svg)](https://zenodo.org/badge/latestdoi/52494384) [![Documentation](https://img.shields.io/badge/Sphinx-documentation-blue?logo=sphinx&logoColor=white)](https://matt-graham.github.io/mici/) [![License](https://img.shields.io/badge/License-MIT-yellow.svg)](./LICENSE) [![Test status](https://github.com/matt-graham/mici/actions/workflows/tests.yml/badge.svg)](https://github.com/matt-graham/mici/actions/workflows/tests.yml) [![Linting status](https://github.com/matt-graham/mici/actions/workflows/linting.yml/badge.svg)](https://github.com/matt-graham/mici/actions/workflows/linting.yml) [![Docs status](https://github.com/matt-graham/mici/actions/workflows/docs.yml/badge.svg)](https://github.com/matt-graham/mici/actions/workflows/docs.yml)

Mici is a Python package providing implementations of Markov chain Monte Carlo (MCMC) methods for approximate inference in probabilistic models, with a particular focus on MCMC methods based on simulating Hamiltonian dynamics on a manifold.

Features

Key features include

Installation

To install and use Mici the minimal requirements are a Python 3.10+ environment with NumPy and SciPy installed. The latest Mici release on PyPI (and its dependencies) can be installed in the current Python environment by running

pip install mici

To instead install the latest development version from the main branch on Github run

pip install git+https://github.com/matt-graham/mici

If available in the installed Python environment the following additional packages provide extra functionality and features

Why Mici?

Mici is named for Augusta 'Mici' Teller, who along with Arianna Rosenbluth developed the code for the MANIAC I computer used in the seminal paper Equations of State Calculations by Fast Computing Machines which introduced the first example of a Markov chain Monte Carlo method.

Related projects

Other Python packages for performing MCMC inference include PyMC, PyStan (the Python interface to Stan), Pyro / NumPyro, TensorFlow Probability, emcee, Sampyl and BlackJAX.

Unlike PyMC, PyStan, (Num)Pyro and TensorFlow Probability which are complete probabilistic programming frameworks including functionality for defining a probabilistic model / program, but like emcee, Sampyl and BlackJAX, Mici is solely focused on providing implementations of inference algorithms, with the user expected to be able to define at a minimum a function specifying the negative log (unnormalized) density of the distribution of interest.

Further while PyStan, (Num)Pyro and TensorFlow Probability all push the sampling loop into external compiled non-Python code, in Mici the sampling loop is run directly within Python. This has the consequence that for small models in which the negative log density of the target distribution and other model functions are cheap to evaluate, the interpreter overhead in iterating over the chains in Python can dominate the computational cost, making sampling much slower than packages which outsource the sampling loop to a efficient compiled implementation.

Overview of package

API documentation for the package is available here. The three main user-facing modules within the mici package are the systems, integrators and samplers modules and you will generally need to create an instance of one class from each module.

mici.systems - Hamiltonian systems encapsulating model functions and their derivatives

mici.integrators - symplectic integrators for Hamiltonian dynamics

mici.samplers - MCMC samplers for peforming inference

Notebooks

The manifold MCMC methods implemented in Mici have been used in several research projects. Below links are provided to a selection of Jupyter notebooks associated with these projects as demonstrations of how to use Mici and to illustrate some of the settings in which manifold MCMC methods can be computationally advantageous.

Manifold lifting: scaling MCMC to the vanishing noise regime
Open non-interactive version with nbviewer Render with nbviewer
Open interactive version with Binder Launch with Binder
Open interactive version with Google Colab Open in Colab
Manifold MCMC methods for inference in diffusion models
Open non-interactive version with nbviewer Render with nbviewer
Open interactive version with Binder Launch with Binder
Open interactive version with Google Colab Open in Colab

Example: sampling on a torus

A simple complete example of using the package to compute approximate samples from a distribution on a two-dimensional torus embedded in a three-dimensional space is given below. The computed samples are visualized in the animation above. Here we use SymNum to automatically construct functions to calculate the required derivatives (gradient of negative log density of target distribution and Jacobian of constraint function), sample four chains in parallel using multiprocessing, use ArviZ to calculate diagnostics and use Matplotlib to plot the samples.

import mici
import numpy as np
import symnum
import symnum.numpy as snp
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import arviz

# Define fixed model parameters
R = 1.0  # toroidal radius ∈ (0, ∞)
r = 0.5  # poloidal radius ∈ (0, R)
α = 0.9  # density fluctuation amplitude ∈ [0, 1)

# State dimension
dim_q = 3

# Define constraint function such that the set {q : constr(q) == 0} is a torus
@symnum.numpify(dim_q)
def constr(q):
    x, y, z = q
    return snp.array([((x**2 + y**2) ** 0.5 - R) ** 2 + z**2 - r**2])

# Define negative log density for the target distribution on torus
# (with respect to 2D 'area' measure for torus)
@symnum.numpify(dim_q)
def neg_log_dens(q):
    x, y, z = q
    θ = snp.arctan2(y, x)
    ϕ = snp.arctan2(z, x / snp.cos(θ) - R)
    return snp.log1p(r * snp.cos(ϕ) / R) - snp.log1p(snp.sin(4 * θ) * snp.cos(ϕ) * α)

# Specify constrained Hamiltonian system with default identity metric
system = mici.systems.DenseConstrainedEuclideanMetricSystem(
    neg_log_dens,
    constr,
    backend="symnum",
)

# System is constrained therefore use constrained leapfrog integrator
integrator = mici.integrators.ConstrainedLeapfrogIntegrator(system)

# Seed a random number generator
rng = np.random.default_rng(seed=1234)

# Use dynamic integration-time HMC implementation as MCMC sampler
sampler = mici.samplers.DynamicMultinomialHMC(system, integrator, rng)

# Sample initial positions on torus using parameterisation (θ, ϕ) ∈ [0, 2π)²
# x, y, z = (R + r * cos(ϕ)) * cos(θ), (R + r * cos(ϕ)) * sin(θ), r * sin(ϕ)
n_chain = 4
θ_init, ϕ_init = rng.uniform(0, 2 * np.pi, size=(2, n_chain))
q_init = np.stack(
    [
        (R + r * np.cos(ϕ_init)) * np.cos(θ_init),
        (R + r * np.cos(ϕ_init)) * np.sin(θ_init),
        r * np.sin(ϕ_init),
    ],
    -1,
)

# Define function to extract variables to trace during sampling
def trace_func(state):
    x, y, z = state.pos
    return {"x": x, "y": y, "z": z}

# Sample 4 chains in parallel with 500 adaptive warm up iterations in which the
# integrator step size is tuned, followed by 2000 non-adaptive iterations
final_states, traces, stats = sampler.sample_chains(
    n_warm_up_iter=500,
    n_main_iter=2000,
    init_states=q_init,
    n_process=4,
    trace_funcs=[trace_func],
)

# Print average accept probability and number of integrator steps per chain
for c in range(n_chain):
    print(f"Chain {c}:")
    print(f"  Average accept prob. = {stats['accept_stat'][c].mean():.2f}")
    print(f"  Average number steps = {stats['n_step'][c].mean():.1f}")

# Print summary statistics and diagnostics computed using ArviZ
print(arviz.summary(traces))

# Visualize concatentated chain samples as animated 3D scatter plot
fig, ax = plt.subplots(
    figsize=(4, 4),
    subplot_kw={"projection": "3d", "proj_type": "ortho"},
)
(points_3d,) = ax.plot(*(np.concatenate(traces[k]) for k in "xyz"), ".", ms=0.5)
ax.axis("off")
for set_lim in [ax.set_xlim, ax.set_ylim, ax.set_zlim]:
    set_lim((-1, 1))

def update(i):
    angle = 45 * (np.sin(2 * np.pi * i / 60) + 1)
    ax.view_init(elev=angle, azim=angle)
    return (points_3d,)

anim = animation.FuncAnimation(fig, update, frames=60, interval=100)
plt.show()

References

  1. Andersen, H.C., 1983. RATTLE: A “velocity” version of the SHAKE algorithm for molecular dynamics calculations. Journal of Computational Physics, 52(1), pp.24-34. DOI:10.1016/0021-9991(83)90014-1
  2. Duane, S., Kennedy, A.D., Pendleton, B.J. and Roweth, D., 1987. Hybrid Monte Carlo. Physics letters B, 195(2), pp.216-222. DOI:10.1016/0370-2693(87)91197-X
  3. Mackenzie, P.B., 1989. An improved hybrid Monte Carlo method. Physics Letters B, 226(3-4), pp.369-371. DOI:10.1016/0370-2693(89)91212-4
  4. Horowitz, A.M., 1991. A generalized guided Monte Carlo algorithm. Physics Letters B, 268(CERN-TH-6172-91), pp.247-252. DOI:10.1016/0370-2693(91)90812-5
  5. Leimkuhler, B. and Reich, S., 1994. Symplectic integration of constrained Hamiltonian systems. Mathematics of Computation, 63(208), pp.589-605. DOI:10.2307/2153284
  6. Leimkuhler, B. and Reich, S., 2004. Simulating Hamiltonian dynamics (Vol. 14). Cambridge University Press. DOI:10.1017/CBO9780511614118
  7. Hartmann, C. and Schütte, C., 2005. A constrained hybrid Monte‐Carlo algorithm and the problem of calculating the free energy in several variables. ZAMM ‐ Journal of Applied Mathematics and Mechanics, 85(10), pp.700-710. DOI:10.1002/zamm.200410218
  8. Girolami, M. and Calderhead, B., 2011. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2), pp.123-214. DOI:10.1111/j.1467-9868.2010.00765.x
  9. Brubaker, M., Salzmann, M. and Urtasun, R., 2012. A family of MCMC methods on implicitly defined manifolds. In Artificial intelligence and statistics (pp. 161-172). CiteSeerX:10.1.1.417.6111
  10. Betancourt, M., 2013. A general metric for Riemannian manifold Hamiltonian Monte Carlo. In Geometric science of information (pp. 327-334). DOI:10.1007/978-3-642-40020-9_35 arXiv:1212.4693
  11. Hoffman, M.D. and Gelman, A., 2014. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), pp.1593-1623. CiteSeerX:10.1.1.220.8395 arXiv:1111.4246
  12. Shahbaba, B., Lan, S., Johnson, W.O. and Neal, R.M., 2014. Split Hamiltonian Monte Carlo. Statistics and Computing, 24(3), pp.339-349. DOI:10.1007/s11222-012-9373-1 arXiv:1106.5941
  13. Blanes, S., Casas, F., & Sanz-Serna, J. M., 2014. Numerical integrators for the Hybrid Monte Carlo method. SIAM Journal on Scientific Computing, 36(4), A1556-A1580. DOI:10.1137/130932740 arXiv:1405.3153
  14. Betancourt, M., 2017. A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434
  15. Lelièvre, T., Rousset, M. and Stoltz, G., 2019. Hybrid Monte Carlo methods for sampling probability measures on submanifolds. In Numerische Mathematik, 143(2), (pp.379-421). DOI:10.1007/s00211-019-01056-4 arXiv:1807.02356