.. -- mode: rst --
Boosting and ensemble learning library in Python.
Algorithms supported:
ivalice follows the scikit-learn <http://scikit-learn.org>
API conventions.
Computationally demanding parts are implemented using Numba <http://numba.pydata.org>
.
ivalice needs Python >= 2.7, setuptools, Numpy >= 1.3, SciPy >= 0.7, scikit-learn >= 0.15.1 and Numba >= 0.13.4.
To run the tests you will also need nose >= 0.10.
To install ivalice from pip, type::
pip install https://github.com/mblondel/ivalice/archive/master.zip
To install ivalice from source, type::
git clone https://github.com/mblondel/ivalice.git cd ivalice sudo python setup.py install
https://github.com/mblondel/ivalice
Mathieu Blondel, 2014-present