mblondel / ivalice

Boosting and ensemble learning in Python.
54 stars 12 forks source link

.. -- mode: rst --

ivalice

Boosting and ensemble learning library in Python.

Algorithms supported:

ivalice follows the scikit-learn <http://scikit-learn.org> API conventions. Computationally demanding parts are implemented using Numba <http://numba.pydata.org>.

Dependencies

ivalice needs Python >= 2.7, setuptools, Numpy >= 1.3, SciPy >= 0.7, scikit-learn >= 0.15.1 and Numba >= 0.13.4.

To run the tests you will also need nose >= 0.10.

Installation

To install ivalice from pip, type::

pip install https://github.com/mblondel/ivalice/archive/master.zip

To install ivalice from source, type::

git clone https://github.com/mblondel/ivalice.git cd ivalice sudo python setup.py install

On Github

https://github.com/mblondel/ivalice

Author

Mathieu Blondel, 2014-present